AIGC:【LLM(五)】——Faiss:高效的大规模相似度检索库

文章目录

    • 一.简介
      • 1.1 什么是Faiss
      • 1.2 Faiss的安装
    • 二.Faiss检索流程
      • 2.1 构建向量库
      • 2.2 构建索引
      • 2.3 top-k检索
    • 三.Faiss构建索引的多种方式
      • 3.1 Flat :暴力检索
      • 3.2 IVFx Flat :倒排暴力检索
      • 3.3 IVFxPQy 倒排乘积量化
      • 3.4 LSH 局部敏感哈希
      • 3.5 HNSWx

一.简介

1.1 什么是Faiss

Faiss的全称是Facebook AI Similarity Search,是Facebook的AI团队针对大规模相似度检索问题开发的一个工具,使用C++编写,有python接口,对10亿量级的索引可以做到毫秒级检索的性能。
简单来说,Faiss的工作就是把我们自己的候选向量集封装成一个index数据库,它可以加速我们检索相似向量top-K的过程,其中有些索引还支持GPU构建。

1.2 Faiss的安装

## cpu版
$ conda install -c pytorch faiss-cpu
## gpu版
$ conda install -c pytorch faiss-gpu

二.Faiss检索流程

2.1 构建向量库

这一部分就是将我们已有的数据转成向量库。

import numpy as np
d = 64                                           # 向量维度
nb = 100000                                      # index向量库的数据量
nq = 10000                                       # 待检索query的数目
np.random.seed(1234)             
xb = np.random.random((nb, d)).astype('float32')
xb[:, 0] += np.arange(nb) / 1000.                # index向量库的向量
xq = np.random.random((nq, d)).astype('float32')
xq[:, 0] += np.arange(nq) / 1000.                # 待检索的query向量

2.2 构建索引

用faiss 构建index,并将向量添加到index中。这里我们选用暴力检索的方法FlatL2,L2代表构建的index采用的相似度度量方法为L2范数,即欧氏距离。

import faiss          
index = faiss.IndexFlatL2(d)             
print(index.is_trained)         # 输出为True,代表该类index不需要训练,只需要add向量进去即可
index.add(xb)                   # 将向量库中的向量加入到index中
print(index.ntotal)             # 输出index中包含的向量总数,为100000 

2.3 top-k检索

检索与query最相似的top-k。

k = 4                     # topK的K值
D, I = index.search(xq, k)# xq为待检索向量,返回的I为每个待检索query最相似TopK的索引list,D为其对应的距离
print(I[:5])
print(D[-5:])

三.Faiss构建索引的多种方式

构建index方法和传参方法可以为:

dim, measure = 64, faiss.METRIC_L2
param = 'Flat'
index = faiss.index_factory(dim, param, measure)
  • dim为向量维数
  • 最重要的是param参数,它是传入index的参数,代表需要构建什么类型的索引;
  • measure为度量方法,目前支持两种,欧氏距离和inner product,即内积。因此,要计算余弦相似度,只需要将vecs归一化后,使用内积度量即可。

此外,Faiss官方支持八种度量方式,分别是:
1)METRIC_INNER_PRODUCT(内积)
2)METRIC_L1(曼哈顿距离)
3)METRIC_L2(欧氏距离)
4)METRIC_Linf(无穷范数)
5)METRIC_Lp(p范数)
6)METRIC_BrayCurtis(BC相异度)
7)METRIC_Canberra(兰氏距离/堪培拉距离)
8)METRIC_JensenShannon(JS散度)

3.1 Flat :暴力检索

  • 优点:该方法是Faiss所有index中最准确的,召回率最高的方法,没有之一;
  • 缺点:速度慢,占内存大。
  • 使用情况:向量候选集很少,在50万以内,并且内存不紧张。
  • Ps:虽然都是暴力检索,faiss的暴力检索速度比一般程序猿自己写的暴力检索要快上不少,所以并不代表其无用武之地,建议有暴力检索需求的同学还是用下faiss。
  • 构建方法
dim, measure = 64, faiss.METRIC_L2
param = 'Flat'
index = faiss.index_factory(dim, param, measure)
index.is_trained                                   # 输出为True
index.add(xb)                                      # 向index中添加向量

3.2 IVFx Flat :倒排暴力检索

  • 优点:IVF主要利用倒排的思想,在文档检索场景下的倒排技术是指,一个kw后面挂上很多个包含该词的doc,由于kw数量远远小于doc,因此会大大减少了检索的时间。在向量中如何使用倒排呢?可以拿出每个聚类中心下的向量ID,每个中心ID后面挂上一堆非中心向量,每次查询向量的时候找到最近的几个中心ID,分别搜索这几个中心下的非中心向量。通过减小搜索范围,提升搜索效率。
  • 缺点:速度也还不是很快。
  • 使用情况:相比Flat会大大增加检索的速度,建议百万级别向量可以使用。
  • 参数:IVFx中的x是k-means聚类中心的个数
  • 构建方法
dim, measure = 64, faiss.METRIC_L2 
param = 'IVF100,Flat'                           # 代表k-means聚类中心为100,   
index = faiss.index_factory(dim, param, measure)
print(index.is_trained)                          # 此时输出为False,因为倒排索引需要训练k-means,
index.train(xb)                                  # 因此需要先训练index,再add向量
index.add(xb)

3.3 IVFxPQy 倒排乘积量化

  • 优点:工业界大量使用此方法,各项指标都均可以接受,利用乘积量化的方法,改进了IVF的k-means,将一个向量的维度切成x段,每段分别进行k-means再检索。
  • 缺点:集百家之长,自然也集百家之短
  • 使用情况:一般来说,各方面没啥特殊的极端要求的话,最推荐使用该方法!
  • 参数:IVFx,PQy,其中的x和y同上
  • 构建方法
dim, measure = 64, faiss.METRIC_L2  
param =  'IVF100,PQ16'
index = faiss.index_factory(dim, param, measure) 
print(index.is_trained)                          # 此时输出为False,因为倒排索引需要训练k-means, 
index.train(xb)                                  # 因此需要先训练index,再add向量 index.add(xb)
index.add(xb)

3.4 LSH 局部敏感哈希

  • 原理:哈希对大家再熟悉不过,向量也可以采用哈希来加速查找,我们这里说的哈希指的是局部敏感哈希(Locality Sensitive Hashing,LSH),不同于传统哈希尽量不产生碰撞,局部敏感哈希依赖碰撞来查找近邻。高维空间的两点若距离很近,那么设计一种哈希函数对这两点进行哈希计算后分桶,使得他们哈希分桶值有很大的概率是一样的,若两点之间的距离较远,则他们哈希分桶值相同的概率会很小。
  • 优点:训练非常快,支持分批导入,index占内存很小,检索也比较快
  • 缺点:召回率非常拉垮。
  • 使用情况:候选向量库非常大,离线检索,内存资源比较稀缺的情况
  • 构建方法
dim, measure = 64, faiss.METRIC_L2  
param =  'LSH'
index = faiss.index_factory(dim, param, measure) 
print(index.is_trained)                          # 此时输出为True
index.train(xb) 
index.add(xb)

3.5 HNSWx

  • 优点:该方法为基于图检索的改进方法,检索速度极快,10亿级别秒出检索结果,而且召回率几乎可以媲美Flat,最高能达到惊人的97%。检索的时间复杂度为loglogn,几乎可以无视候选向量的量级了。并且支持分批导入,极其适合线上任务,毫秒级别体验。
  • 缺点:构建索引极慢,占用内存极大(是Faiss中最大的,大于原向量占用的内存大小)
  • 参数:HNSWx中的x为构建图时每个点最多连接多少个节点,x越大,构图越复杂,查询越精确,当然构建index时间也就越慢,x取4~64中的任何一个整数。
  • 使用情况:不在乎内存,并且有充裕的时间来构建index
  • 构建方法
dim, measure = 64, faiss.METRIC_L2   
param =  'HNSW64' 
index = faiss.index_factory(dim, param, measure)  
print(index.is_trained)                          # 此时输出为True 
index.add(xb)

在这里插入图片描述

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/26036.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

flask------消息闪现 flash

1介绍 flask提供了一个非常有用的flash()函数,它可以用来“闪现”需要提示给用户的消息,比如当用户登录成功后显示“欢迎回来!”。在视图函数调用flash()函数,传入消息内容,flash()函数把消息存…

TPlink DDNS 内网穿透?外网访问设置方法

有很多小伙伴都想知道:TPlink路由器怎么设置DDNS内网穿透?今天,小编就给大家分享一下TPlink DDNS 外网访问设置方法,下面是图文教程,帮助新手快速入门DDNS设置。 本文介绍的是云路由器TP-LINK DDNS的设置方法。TP-LIN…

R-Meta分析教程

详情点击链接:R-Meta模型教程 一:Meta分析的选题与文献计量分析CiteSpace应用 1、Meta分析的选题与文献检索 1)什么是Meta分析? 2)Meta分析的选题策略 3)文献检索数据库 4)精确检索策略,如何检索全、检索准 5)文献的管理与…

浏览器同源策略

浏览器同源策略 同源策略:是一个重要的浏览器的安全策略,用于限制一个源的文档或者它加载的脚本如何能与另一个源的资源进行交互 它能帮助阻隔恶意文档,减少可能被攻击的媒介 例如:被钓鱼网站收集信息,使用ajax发起…

DevOps系列文章之 Docker 安装 NFS 服务器

Docker 安装 NFS 服务器 环境: 192.186.2.105 NFS 服务器 192.168.2.106 Client 客户端 安装 一、服务器端 https://github.com/f-u-z-z-l-e/docker-nfs-server 1、创建目录 mkdir /nfsdata mkdir -p /docker/nfs/2、启动脚本 vim start.sh# 内容 docker run …

shell脚本自动打包部署

1、安装git 2、使用Git克隆代码 3、安装Maven (1) tar -zxvf ** 解压文件 (2)修改配置 (3)source /etc/profile 重新加载一下文件 (4)mvn -version 查看版本号 已经安装成…

线程池的使用案例一

一、配置线程池 1、不推荐的方式 ExecutorService executorService Executors.newFixedThreadPool(); // 创建⼀个固定⼤⼩的线程池,可控制并发的线程数,超出的线程会在队列中等待; ExecutorService executorService Executors.newCache…

基于Java+SpringBoot+Vue的篮球竞赛预约平台设计与实现(源码+LW+部署文档等)

博主介绍: 大家好,我是一名在Java圈混迹十余年的程序员,精通Java编程语言,同时也熟练掌握微信小程序、Python和Android等技术,能够为大家提供全方位的技术支持和交流。 我擅长在JavaWeb、SSH、SSM、SpringBoot等框架…

C# 简单模拟 程序内部 消息订阅发布功能

文章目录 前言模拟消息订阅发布使用注意事项 前言 我想做个简单的消息发布订阅功能,但是发现好像没有现成的工具类。要么就是Mqtt这种消息订阅发布。但是我只想程序内部进行消息订阅发布,进行程序的解耦。那没办法了,只能自己上了 模拟消息…

【JavaSE】String类中常用的字符串方法(超全)

目录 1.求字符串的长度 2.判断字符串是否为空 3.String对象的比较 3.1 判断字符串是否相同 3.2 比较字符串大小 3.3 忽略大小写比较 4.字符串查找 5.转化 5.1 数值和字符串转化 5.1.1 数字转字符串 valueof 5.1.2 valueOf的其他用法 5.1.3 字符串转数字 5.2 大小写转…

【Shell】基础语法(二)

文章目录 一、Shell基本语法文件名代换命令代换算术代换转义字符引号 二、Shell脚本语法条件测试分支结构循环 三、总结 一、Shell基本语法 文件名代换 用于匹配的字符称为通配符(Wildcard),如:* ? [ ] 具体如下: *…

3个月拿下华为测试岗,早知道华为这么好进,我就...

先说一下我的情况,某211本科计算机专业,之前在深圳那边做了大约半年多少儿编程老师,之后内部平调回长沙这边,回来之后发现有点难,这边可能是业绩难做,虚假承诺很厉害,要给那些家长虚假承诺去骗人…

暗黑版GPT流窜暗网 降低犯罪门槛

随着AIGC应用的普及,不法分子利用AI技术犯罪的手段越来越高明,欺骗、敲诈、勒索也开始与人工智能沾边。 近期,专为网络犯罪设计的“暗黑版GPT”持续浮出水面,它们不仅没有任何道德界限,更没有使用门槛,没有…

EtherCAT转Profinet网关连接西门子PLC与凯福科技总线步进驱动器通讯

西门子S7-1200/1500系列的PLC,采用Profinet实时以太网通讯协议,需要连接带EtherCAT的通讯功能的伺服驱动器等设备,就必须进行通讯协议转换。捷米特JM-EIP-RTU系列的网关提供了,快速可行的解决方案 捷米特JM-ECTM-PN在PROFINET一侧…

tomcat

1. 简述静态网页和动态网页的区别。 静态网页是指在服务器存储的网页内容保持不变,不会根据用户的请求或其他条件而改变。它的内容是固定的,无法根据用户的不同需求进行个性化或实时更新。静态网页一般由HTML、CSS和JavaScript等静态资源组成&#xff0…

linux文件描述符fd

文件描述符 fd是一个>0 的整数 每打开一个文件,就创建一个文件描述符,通过文件描述符来操作文件 预定义的文件描述符: 0:标准输入,对应于已打开的标准输入设备(键盘) 1:标准输出,对应于已打开的标准输出设备(控制台) 2.标准错误…

java异常机制分析

java异常机制分析 本文实例分析了java的异常机制,分享给大家供大家参考。相信有助于大家提高大家Java程序异常处理能力。具体分析如下: 众所周知,java中的异常(Exception)机制很重要,程序难免会出错,异常机制可以捕获…

智慧水利整体解决方案[43页PPT]

导读:原文《智慧水利整体解决方案[43页PPT]》(获取来源见文尾),本文精选其中精华及架构部分,逻辑清晰、内容完整,为快速形成售前方案提供参考。 完整版领取方式 完整版领取方式: 如需获取完整的…

LNMP及论坛搭建(第一个访问,单节点)

LNMP:目前成熟的一个企业网站的应用模式之一,指的是一套协同工作的系统和相关软件 能够提供静态页面服务,也可以提供动态web服务,LNMP是缩写 L:指的是Linux操作系统。 N:指的是nginx,nginx提…

Doris(四)-Rollup 使用

1,基本语法 1.1 新增 alter table user_landing_record_newadd rollup succ_login_count_index(user_id,day_succ_login_count); 1.2删除 alter table user_landing_record_newdrop rollup succ_login_count_index; 1.3其他操作,参考官网 传送门 …