进程及线程通信总结

上文我们介绍了如何建立一个简单的多线程程序,多线程之间不可避免的需要进行通信 。相比于进程间通信来说,线程间通信无疑是相对比较简单的

    首先我们来看看最简单的方法,那就是使用全局变量(静态变量也可以)来进行通信由于属于同一个进程的各个线程是处于同一个进程空间中的,并且它们共享这个进程的各种资源,因此它们都可以毫无障碍的访问这个进程中的全局变量。当需要有多个线程来访问一个全局变量时,通常我们会在这个全局变量前加上volatile声明,来告诉编译器这个全局变量是易变的,让编译器不要对这个变量进行优化(至于编译器到底有没有按照你的要求来对volatile进行处理这个暂且不理)。

    下面贴出一段简单的示例代码:

#include "stdafx.h"
#include 
"windows.h"
#include 
"stdio.h"

volatile int ThreadData = 0;

void ThreadProcess()
{
    
for(int i=0; i<6; i++)
    
{
        ThreadData 
+= 1000;
        Sleep(
1000);
        printf(
"Sub  Thread Tick %5d! %5d\n",(i+1)*1000, ThreadData);
    }

    printf(
"Exit Sub Thread!\n");
    
}


int _tmain(int argc, _TCHAR* argv[])
{
    HANDLE hThread;
    DWORD ThreadID;
    hThread
=CreateThread(NULL,
                     
0,
                     (LPTHREAD_START_ROUTINE)ThreadProcess,
                     NULL,
                     
0,
                     
&ThreadID);
    
    
for(int i=0; i<10; i++)
    
{
        ThreadData 
-= 600;
        Sleep(
600);
        printf(
"Main Thread Tick %5d! %5d\n", (i+1)*600, ThreadData);
    }

    printf(
"Main Thread Loop Finished! \n");
    system(
"pause");
    
return 0;
}

 

 

    除了全局变量之外,还有其他的方法,比如利用消息机制等来实现线程间通信。

 

线程间无需特别的手段进行通信,因为线程间可以共享数据结构,也就是一个全局变量可以被两个线程同时使用。不过要注意的是线程间需要做好同步,一般用mutex

 

一、互斥与同步
1.互斥:是指某一资源同时只允许一个访问者对其进行访问,具有唯一性和排它性。但互斥无法限制访问者对资源的访问顺序,即访问是无序的。

2.同步:是指在互斥的基础上(大多数情况),通过其它机制实现访问者对资源的有序访问。在大多数情况下,同步已经实现了互斥,特别是所有写入资源的情况必定是互斥的。少数情况是指可以允许多个访问者同时访问资源.

3.同步是一种更为复杂的互斥,而互斥是一种特殊的同步.

二、通信与同步
进程间同步本身也是一种进程间通信(因为涉及信息的交换),当然也是一种原始的进程间通信,但同时又是更高级的进程间通信机制的基石。
对线程亦然.

三、临界区(Critical section)与互斥体(Mutex)的区别

1、临界区只能用于对象在同一进程里线程间的互斥访问;互斥体可以用于对象进程间或线程间的互斥访问。
2、临界区是非内核对象,只在用户态进行锁操作,速度快;互斥体是内核对象,在核心态进行锁操作,速度慢。
3、临界区和互斥体在Windows平台都下可用;Linux下只有互斥体可用。

四、linux IPC
1.经典IPC:
(1)管道、命名管道       //最基本最常用

(2)消息队列、信号量、共享存储
//分为Posix IPC和System V IPC,共享存储是运行在同一台机器上的进程间通信最快的方式

2高级IPC: 流管道、命名流管道
(以上是限于同一台主机的各个进程间的IPC)

3.支持不同主机上各个进程的IPC:套接口、流

五、线程间通信机制:
1.互斥锁
2.条件变量
3.读写锁
4.信号灯


本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/253898.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

ROS multi-master——multimaster_fkie配置

多主站ROS配置和mutimaster_fkie ROS版本&#xff1a;kinetic 操作系统&#xff1a;Ubuntu 16.04。 multimaster_fkie&#xff1a;github 1网络配置 1.1路由器 设置无线路由器并连接两台计算机/机器人。为这两台计算机设置静态IP地址。相互测试ping命令和ssh。 1.2主机 …

Docker入门

1. Docker简介: docker是一个基于LXC的高级容器引擎。简单地说&#xff0c;docker是一个轻量级的虚拟解决方案&#xff0c;或者说它是一个超轻量级的虚拟机&#xff08;容器&#xff09;。 Docker是一个开源的引擎&#xff0c;可以轻松的为任何应用创建一个轻量级的、可移植的、…

Gmapping——从原理到实践

概述 在SLAM中&#xff0c;机器人位姿和地图都是状态变量&#xff0c;我们需要同时对这两个状态变量进行估计&#xff0c;即机器人获得一张环境地图的同时确定自己相对于该地图的位置。我们用x表示机器人状态&#xff0c;m表示环境地图&#xff0c;z表示传感器观测情况&#xf…

【机器学习经典算法源码分析系列】-- 逻辑回归

1.逻辑回归&#xff08;Logistic Regression&#xff09;又常被成为“逻辑斯蒂回归”&#xff0c;实质上是一个二元分类问题。 逻辑回归代价函数&#xff1a; 代价函数导数&#xff1a; Matlab实现&#xff1a; 采用matlab中自带的无约束最小化函数fminunc来代替梯度下降法&…

ROS——不同版本间ROS进行通信

在相同版本间的ROS进行通信不在赘述了&#xff0c;修改/etc/hosts文件即可。 最近项目遇到在Ubuntu16.04 与Ubuntu18.04两个系统间进行ROS通信&#xff0c;ROS版本分别为Kinetic和Melodic。配置网络后&#xff0c;两边都能够ping通&#xff0c;但是在获取ros数据是&#xff0c…

大数据开发实战:数据流图及相关数据技术

1、大数据流程图 2、大数据各个环节主要技术 2.1、数据处理主要技术 Sqoop&#xff1a;&#xff08;发音&#xff1a;skup&#xff09;作为一款开源的离线数据传输工具&#xff0c;主要用于Hadoop(Hive) 与传统数据库&#xff08;MySql,PostgreSQL&#xff09;间的数据传递。它…

跨时钟域电路设计——亚稳态及双锁存器

一、同步电路 定义&#xff1a;电路中所有受时钟控制的单元&#xff0c;全部由一个统一的时钟控制。 优点&#xff1a;在同步设计中&#xff0c;EDA工具可以保证电路系统的时序收敛&#xff0c;避免电路设计中的竞争冒险。 缺点&#xff1a;时钟树综合需要加入大量延迟单元&…

跨时钟域电路设计——单bit信号

前面提到了简单的双电平锁存器&#xff0c;下面是一些单bit同步电路。 一、慢时钟域向快时钟域 边沿检测同步器 将慢时钟域的脉冲搬移并缩小为快时钟域的脉冲。 既可以检测上升沿&#xff0c;也可以检测下降沿。 如上图&#xff0c;慢时钟下一个有效脉冲的最短周期为慢时钟的…

C语言100例01 PHP版(练习)

题目&#xff1a;有1、2、3、4个数字&#xff0c;能组成多少个互不相同且无重复数字的三位数&#xff1f;都是多少&#xff1f; 程序分析&#xff1a;可填在百位、十位、个位的数字都是1、2、3、4。组成所有的排列后再去 掉不满足条件的排列。 代码&#xff1a; 1 for($i1;$i&l…

跨时钟域电路设计——结绳法

信号从快时钟域到慢时钟域过渡时&#xff0c;慢时钟可能无法对快时钟变化太快的信号进行采样。 之前的同步器法对两个时钟间的关系有要求&#xff0c;结绳法适用于任何时钟域之间的过渡。 结绳法的原理是将快时钟信号的脉冲周期延长&#xff0c;等到慢时钟周期采样后再“解绳”…

我之理解---计时器setTimeout 和clearTimeout

今天在写个图片切换的问题 有动画滞后的问题&#xff0c;才动手去查setTimeout 和clearTimeout。之前写的图片播放器也有类似的问题&#xff0c;有自动start按钮 和stop按钮&#xff0c; 其他都正常&#xff0c;问题出在每次多次快速的点击start按钮时&#xff0c;图片播放的速…

关于二维码分块上色(彩色二维码)的算法研究

原文:关于二维码分块上色&#xff08;彩色二维码&#xff09;的算法研究众所周知&#xff0c;二维码通常是黑白的&#xff0c;而且是由若干个长方形或正方形小块平铺而成。但从人们的审美角度来看&#xff0c;常见的黑白二维码不免让人审美疲劳。本文试着从分块上色的角度对二维…

20145309信息安全系统设计基础第12周学习总结后篇

指针与声明 声明 1、C语言中变量的声明 类型&#xff08;type&#xff09; 声明符&#xff08;declarator&#xff09; 2、最简单的声明是变量 3、指针数组 指针数组是一个数组数组里的元素都是指针例&#xff1a;int *daytab[13]4、数组指针 数组指针是一个指针指针指向一个类…

跨时钟域电路设计——多bit信号FIFO

多个bit信号的跨时钟域仅仅通过简单的同步器同步时不安全的。 如下图&#xff1a; 虽然信号都同步到目的时钟域&#xff0c;可完成的功能却与设计的初衷不相符。 解决方案之一为对信号进行格雷码编码&#xff0c;但此方案只适用于连续变化的信号。另一种方案为增加新的控制信号…

WPF 打印实例

原文:WPF 打印实例在WPF 中可以通过PrintDialog 类方便的实现应用程序打印功能&#xff0c;本文将使用一个简单实例进行演示。首先在VS中编辑一个图形&#xff08;如下图所示&#xff09;。 将需要打印的内容放入同一个<Canvas>中&#xff0c;并起名为“printArea”&…

静态时序分析——基础概念

一、简述 静态时序分析是检查系统时序是否满足要求的主要手段。以往时序的验证依赖于仿真&#xff0c;采用仿真的方法&#xff0c;覆盖率跟所施加的激励有关&#xff0c;有些时序违例会被忽略。此外&#xff0c;仿真方法效率非常的低&#xff0c;会大大延长产品的开发周期。静…

静态时序分析——单周期

一、建立时间的检查 建立时间的检查是指检查电路里每一个触发器的数据和时钟的关系是否满足建立时间的要求。 我们以上图为例进行建立时间检查。由图可知&#xff0c;我们主要针对第二个触发器UFF1进行检查。我们可以梳理时序关系如下&#xff1a; 通过这个图&#xff0c;我们…

自己搭建的CISCO实验环境

交换机&#xff1a;设备型号&#xff1a; CISCO 3750 24-TS 3台CISCO 3750 48-PS 1台路由器&#xff1a;设备型号&#xff1a;1.CISCO 2821 3台2.CISCO 3745 3台 物理拓扑图如下&#xff1a; 转载于:https://blog.51cto.com/zxs3026/2156424

CMOS组合逻辑

1. 静态互补CMOS 实际上就是静态CMOS反相器扩展为具有多个输入。更反相器一样具有良好的稳定性&#xff0c;性能和功耗。 静态的概念&#xff1a;每一时刻每个门的输出通过低阻抗路径连到VDD或VSS上。任何时候输出即为布尔函数值。动态电路通常依赖把信号暂存在高阻抗节点的电…

绘制泰森多边形

使用到的数据文件&#xff0c;内容如图&#xff1a; 代码&#xff1a; clc; clear; close all; % 导入需要的坐标数据成矩阵 a load(test.txt); x a(:,1); y a(:,2); x x;%获取坐标的横坐标 y y;%获取坐标的纵坐标 %根据点 绘制泰森多边形 voronoi(x,y); %设定x轴的边界 x…