自然语言处理学习笔记(五)————切分算法

目录

1.切分算法

2.完全切分

3.正向最长匹配

4.逆向最长匹配

5.双向最长匹配

6.速度评测


1.切分算法

        词典确定后,句子可能含有很多词典中的词语,他们有可能互相重叠,如何切分需要一些规则。常用规则为:正向匹配算法、逆向匹配算法以及双向匹配算法。但他们都是基于完全切分过程。

2.完全切分

        完全切分指的是,找出一段文本中的所有单词。朴素的完全切分算法其实非常简单,只要遍历文本中的连续序列,查询该序列是否在词典中即可。定义词典为dic,文本为text,当前的处理位置为i,完全切分的python算法如下:

def fully_segment(text, dic):word_list = []for i in range(len(text)):                  # i 从 0 到text的最后一个字的下标遍历for j in range(i + 1, len(text) + 1):   # j 遍历[i + 1, len(text)]区间word = text[i:j]                    # 取出连续区间[i, j]对应的字符串if word in dic:                     # 如果在词典中,则认为是一个词word_list.append(word)return word_listif __name__ == '__main__':dic = load_dictionary()print(fully_segment('商品和服务', dic))

        运行结果: 

        输出了所有可能的单词。由于词库中含有单字,所以结果中也出现了一些单字。 

3.正向最长匹配

        完全切分的结果比较没有意义,我们更需要那种有意义的词语序列,而不是所有出现在词典中的单词所构成的链表。 所以需要完善一下处理规则,考虑到越长的单词表达的意义越丰富,于是我们定义单词越长优先级越高。具体说来,就是在以某个下标为起点递增查词的过程中,优先输出更长的单词,这种规则被称为最长匹配算法。扫描顺序从前往后,则称为正向最长匹配,反之则为逆向最长匹配。

def forward_segment(text, dic):word_list = []i = 0while i < len(text):longest_word = text[i]                      # 当前扫描位置的单字for j in range(i + 1, len(text) + 1):       # 所有可能的结尾word = text[i:j]                        # 从当前位置到结尾的连续字符串if word in dic:                         # 在词典中if len(word) > len(longest_word):   # 并且更长longest_word = word             # 则更优先输出word_list.append(longest_word)              # 输出最长词i += len(longest_word)                      # 正向扫描return word_listif __name__ == '__main__':dic = load_dictionary()print(forward_segment('就读北京大学', dic))print(forward_segment('研究生命起源', dic))

结果:

['就读', '北京大学']
['研究生', '命', '起源'] 

第二句话就会产生误差了,我们是需要把“研究”提取出来,结果按照正向最长匹配算法就提取出了“研究生”,所以人们就想出了逆向最长匹配。 


4.逆向最长匹配

def backward_segment(text, dic):word_list = []i = len(text) - 1while i >= 0:                                   # 扫描位置作为终点longest_word = text[i]                      # 扫描位置的单字for j in range(0, i):                       # 遍历[0, i]区间作为待查询词语的起点word = text[j: i + 1]                   # 取出[j, i]区间作为待查询单词if word in dic:if len(word) > len(longest_word):   # 越长优先级越高longest_word = wordbreakword_list.insert(0, longest_word)           # 逆向扫描,所以越先查出的单词在位置上越靠后i -= len(longest_word)return word_listdic = load_dictionary()
print(backward_segment('研究生命起源', dic))
print(backward_segment('项目的研究', dic))

        输出:

['研究', '生命', '起源']

['项', '目的', '研究']

        第一句正确了,但下一句又出错了,可谓拆东墙补西墙。另一些人提出综合两种规则,期待它们取长补短,称为双向最长匹配。

5.双向最长匹配

        统计显示,正向匹配错误而逆向匹配正确的句子占9.24%。双向最长匹配规则集,流程如下:

(1)同时执行正向和逆向最长匹配,若两者的词数不同,则返回词数更少的那一个。

(2)否则,返回两者中单字更少的那一个。当单字数也相同时,优先返回逆向最长匹配的结果。

def count_single_char(word_list: list):  # 统计单字成词的个数return sum(1 for word in word_list if len(word) == 1)def bidirectional_segment(text, dic):f = forward_segment(text, dic)b = backward_segment(text, dic)if len(f) < len(b):                                  # 词数更少优先级更高return felif len(f) > len(b):return belse:if count_single_char(f) < count_single_char(b):  # 单字更少优先级更高return felse:return b                                     # 都相等时逆向匹配优先级更高print(bidirectional_segment('研究生命起源', dic))
print(bidirectional_segment('项目的研究', dic))

结果:

['研究', '生命', '起源']
['项', '目的', '研究']

        比较之后发现,双向最长匹配在2、3、5这3种情况下选择出了最好的结果,但在4号句子上选择了错误的结果,使得最终正确率3/6反而小于逆向最长匹配的4/6。由此,规则系统的脆弱可见一斑。规则集的维护有时是拆东墙补西墙,有时是帮倒忙。

6.速度评测

词典分词的规则没有技术含量,消除歧义的效果不好。词典分词的核心价值不在于精度,而在于速度。

 总结:

  • Python的运行速度比Java慢,效率只有Java的一半不到
  • 正向匹配与逆向匹配的速度差不多,是双向的两倍。因为双向做了两倍的工作
  • Java实现的正向匹配比逆向匹配快

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/25325.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

关于Godot游戏引擎制作流水灯

先上核心代码 游戏节点 流水灯的通途可以是 1. 装饰 2. 音乐类多媒体程序&#xff08;如FL中TB-303的步进灯&#xff09; FL Studio Transistor Bass

Stephen Wolfram:ChatGPT 的训练

The Training of ChatGPT ChatGPT 的训练 OK, so we’ve now given an outline of how ChatGPT works once it’s set up. But how did it get set up? How were all those 175 billion weights in its neural net determined? Basically they’re the result of very large…

pycharm、idea、golang等JetBrains其他IDE修改行分隔符(换行符)

文章目录 pycharm、idea、golang系列修改行分隔符我应该选择什么换行符JetBrains IDE&#xff0c;默认行分隔符 是跟随系统修改JetBrains IDE&#xff0c;默认行分隔符 pycharm、idea、golang系列修改行分隔符 一般来说,不同的开发环境和项目对换行格式的使用偏好不同: Windo…

Maven: No compiler is provided in this environment.

在Eclipse中运行Maven项目&#xff0c;报错&#xff1a; No compiler is provided in this environment. Perhaps you are running on a JRE rather than a JDK? 解决方法&#xff1a; Windows > Preferences > Java > Installed JREs > Add > Standard VM,…

基于arcFace+faiss开发构建人脸识别系统

在上一篇博文《基于facenetfaiss开发构建人脸识别系统》中&#xff0c;我们实践了基于facenet和faiss的人脸识别系统开发&#xff0c;基于facenet后续提出来很多新的改进的网络模型&#xff0c;arcFace就是其中一款优秀的网络模型&#xff0c;本文的整体开发实现流程与前文相同…

软件测试缺陷报告

缺陷报告是描述软件缺陷现象和重现步骤地集合。软件缺陷报告Software Bug Report&#xff08;SBR&#xff09;或软件问题报告Software Problem Report&#xff08;SPR&#xff09; 作用&#xff1a;缺陷报告是软件测试人员的工作成果之一&#xff0c;体现软件测试的价值缺陷报…

针对高可靠性和高性能优化的1200V碳化硅沟道MOSFET

目录 标题&#xff1a;1200V SiC Trench-MOSFET Optimized for High Reliability and High Performance摘要信息解释研究了什么文章创新点文章的研究方法文章的结论 标题&#xff1a;1200V SiC Trench-MOSFET Optimized for High Reliability and High Performance 摘要 本文详…

Vue2 第二十一节 Vue UI组件库

移动端常用UI组件 1. Vant https://youzan.github.io/vant 2. Cube UI https://didi.github.io/cube-ui 3. Mint UI http://mint-ui.github.io PC端常用UI组件 1. Element UI https://element.eleme.cn 2. IView UI https://www.iviewui.com 一. Element UI 的引入和使…

SpringBoot项目增加logback日志文件

一、简介 在开发和调试过程中&#xff0c;日志是一项非常重要的工具。它不仅可以帮助我们快速定位和解决问题&#xff0c;还可以记录和监控系统的运行状态。Spring Boot默认提供了一套简单易用且功能强大的日志框架logback&#xff0c;本文将介绍如何在Spring Boot项目中配置和…

SpringBoot核心配置和注解

目录 一、注解 元注解 基本注解 启动注解 二、配置 格式介绍 读取配置文件信息 案例演示1 嵌套读取bean信息 案例演示2 读取Map&#xff0c;List 以及 Array 类型配置数据 案例演示3 三、总结 一、注解 之前我们了解了SpringBoot基础和AOP简单应用&#xff0c;这期来讲…

[Docker实现测试部署CI/CD----Jenkins集成相关服务器(3)]

目录 7、 Jenkins 集成 SonarQubeJenkins 中安装 SonarScanner下载移动修改配置文件 8、Jenkins配置SonarQube安装插件添加SonarQube添加 SonarScanner 9、Jenkins集成目标服务器 7、 Jenkins 集成 SonarQube Jenkins 中安装 SonarScanner SonarScanner 是一种代码扫描工具&am…

【stm32】初识stm32—stm32环境的搭建

文章目录 &#x1f6f8;stm32资料分享&#x1f354;stm32是什么&#x1f384;具体过程&#x1f3f3;️‍&#x1f308;安装驱动&#x1f388;1&#x1f388;2 &#x1f3f3;️‍&#x1f308;建立Start文件夹 &#x1f6f8;stm32资料分享 我用夸克网盘分享了「STM32入门教程资料…

【Android】控件与布局入门 - 简易计算器

目录 1. 基础开发环境 2. 计算器的布局和相关按钮 3. 计算器的主要运算逻辑 4. APK 文件 5. 项目源码 1. 基础开发环境 JDK&#xff1a;JDK17 Android Studio&#xff1a;Android Studio Giraffe | 2022.3.1 Android SDK&#xff1a;Android API 34 Gradle: gradle-8.0-bi…

参考RabbitMQ实现一个消息队列

文章目录 前言小小消息管家1.项目介绍2. 需求分析2.1 API2.2 消息应答2.3 网络通信协议设计 3. 开发环境4. 项目结构介绍4.1 配置信息 5. 项目演示 前言 消息队列的本质就是阻塞队列&#xff0c;它的最大用途就是用来实现生产者消费者模型&#xff0c;从而实现解耦合以及削峰填…

Android中简单封装Livedata工具类

Android中简单封装Livedata工具类 前言&#xff1a; 之前讲解过livedata和viewmodel的简单使用&#xff0c;也封装过room工具类&#xff0c;本文是对livedata的简单封装和使用&#xff0c;先是封装了一个简单的工具类&#xff0c;然后实现了一个倒计时工具类的封装. 1.LiveD…

JVM之类加载与字节码(一)

1.类文件结构 一个简单的HelloWorld.Java package cn.itcast.jvm.t5; // HelloWorld 示例 public class HelloWorld { public static void main(String[] args) { System.out.println("hello world"); } }编译为 HelloWorld.class 后的样子如下所示&#xff1a; […

【广州华锐视点】葡萄种植VR虚拟仿真实训平台

随着虚拟现实(VR)技术的不断发展&#xff0c;越来越多的教育领域开始尝试将VR技术应用于教学中。在葡萄栽培这一专业领域&#xff0c;我们开发了一款创新的VR实训课件&#xff0c;旨在为学生提供沉浸式的互动学习体验。本篇文案将为您介绍葡萄种植VR虚拟仿真实训平台所提供的互…

重型并串式液压机械臂建模与simscape仿真

一、建模 Hydraulic manipulator Figure 1 shows different constituting parts of the manipulator considered, with every part labeled using numbers from 1 to 10. For each part, a CAD model is provided. Each file is named in accordance with the corresponding la…

el-popover使用自定义图标

使用el-popover实现鼠标点击或浮动到自定义图标上弹出表格弹窗&#xff0c;官方文档上使用的是按钮el-button&#xff0c;如果想换成图标或其他的组件的话直接把el-button替换掉即可。注意替换之后的组件一定要加slot“reference”&#xff0c;不然组件是显示不出来的。 代码如…

阿里云二级域名配置

阿里云二级域名配置 首先需要进入阿里云控制台的域名管理 1.选择域名点击解析 2.添加记录 3.选择A类型 4.主机记录设置【可以aa.bb或者aa.bb.cc】 到时候会变成&#xff1a;aa.bb.***.com 5.解析请求来源设置为默认 6.记录值 设置为要解析的服务器的ip地址 7.TTL 默认即…