Stephen Wolfram:ChatGPT 的训练

The Training of ChatGPT 

ChatGPT 的训练

OK, so we’ve now given an outline of how ChatGPT works once it’s set up. But how did it get set up? How were all those 175 billion weights in its neural net determined? Basically they’re the result of very large-scale training, based on a huge corpus of text—on the web, in books, etc.—written by humans. As we’ve said, even given all that training data, it’s certainly not obvious that a neural net would be able to successfully produce “human-like” text. And, once again, there seem to be detailed pieces of engineering needed to make that happen. But the big surprise—and discovery—of ChatGPT is that it’s possible at all. And that—in effect—a neural net with “just” 175 billion weights can make a “reasonable model” of text humans write.

好了,我们现在已经描述了一旦 ChatGPT 建立起来,它是如何工作的。但是它是如何建立起来的呢?神经网络中的那 1750 亿个权重是如何确定的?基本上,它们是基于大量的文本(来自网络、书籍等)所进行的大规模训练的结果,这些文本都是人类编写的。正如我们所说,即使有了所有的训练数据,神经网络能够成功地生成“类人”的文本也绝非显而易见。而且,再次强调,似乎需要详细的工程部分来实现这一目标。但 ChatGPT 的一个巨大的惊喜和发现是,这样的事情竟然是可能的。实际上,一个拥有“仅仅” 1750 亿权重的神经网络,就可以成为一个对人类书写文本的“合理模型”。

In modern times, there’s lots of text written by humans that’s out there in digital form. The public web has at least several billion human-written pages, with altogether perhaps a trillion words of text. And if one includes non-public webpages, the numbers might be at least 100 times larger. So far, more than 5 million digitized books have been made available (out of 100 million or so that have ever been published), giving another 100 billion or so words of text. And that’s not even mentioning text derived from speech in videos, etc. (As a personal comparison, my total lifetime output of published material has been a bit under 3 million words, and over the past 30 years I’ve written about 15 million words of email, and altogether typed perhaps 50 million words—and in just the past couple of years I’ve spoken more than 10 million words on livestreams. And, yes, I’ll train a bot from all of that.)

在现代社会,人类编写的大量文本以数字形式存在。公共网络上至少有数十亿个由人类编写的页面,总共可能有一万亿字左右的文本。如果算上非公共网页,这个数字可能至少增加 100 倍。到目前为止,已经有 500 多万本数字化图书可供使用(从历史上看,共出版了约 1 亿本图书),另有大约 1000 亿字的文本。这还不包括来自视频中的语音转化成的文本等。(作为个人对比,我一生中出版的材料总共不到 300 万字,过去 30 年里我写了大约 1500 万字的电子邮件,总共可能敲了 5000 万字。仅在过去的几年里,我在直播中就说了超过 1000 万字。而且,是的,我将从所有这些内容中训练一个机器人。)

But, OK, given all this data, how does one train a neural net from it? The basic process is very much as we discussed it in the simple examples above. You present a batch of examples, and then you adjust the weights in the network to minimize the error (“loss”) that the network makes on those examples. The main thing that’s expensive about “back propagating” from the error is that each time you do this, every weight in the network will typically change at least a tiny bit, and there are just a lot of weights to deal with. (The actual “back computation” is typically only a small constant factor harder than the forward one.)

那么,既然有了这些数据,如何从中训练神经网络呢?基本过程与我们在上面简单示例中讨论的非常相似。你呈现一批示例,然后调整网络中的权重以使网络在这些示例上产生的误差(“损失”)最小化。关于“反向传播”错误的主要昂贵之处在于,每次执行此操作时,网络中的每个权重通常都会发生至少微小的变化,而且还有许多权重需要处理。(实际的“反向计算”通常只比正向计算稍难一些。)

With modern GPU hardware, it’s straightforward to compute the results from batches of thousands of examples in parallel. But when it comes to actually updating the weights in the neural net, current methods require one to do this basically batch by batch. (And, yes, this is probably where actual brains—with their combined computation and memory elements—have, for now, at least an architectural advantage.)

借助现代 GPU 硬件,可以轻松地并行计算数千个示例的结果。但是在实际更新神经网络中的权重时,当前的方法需要逐批次进行。(是的,这可能是实际大脑(具有结合计算和存储单元)至少在架构上具有优势的地方。)

Even in the seemingly simple cases of learning numerical functions that we discussed earlier, we found we often had to use millions of examples to successfully train a network, at least from scratch. So how many examples does this mean we’ll need in order to train a “human-like language” model? There doesn’t seem to be any fundamental “theoretical” way to know. But in practice ChatGPT was successfully trained on a few hundred billion words of text.

即使在我们之前讨论过的学习数值函数的看似简单的情况下,我们也发现通常需要使用数百万个示例来成功训练网络,至少是从头开始的。那么,这意味着我们需要多少个示例来训练一个“类人语言”的模型呢?似乎没有任何基本的“理论”方法来知道。但实际上,ChatGPT 已经成功地通过几千亿字的文本进行了训练。

Some of the text it was fed several times, some of it only once. But somehow it “got what it needed” from the text it saw. But given this volume of text to learn from, how large a network should it require to “learn it well”? Again, we don’t yet have a fundamental theoretical way to say. Ultimately—as we’ll discuss further below—there’s presumably a certain “total algorithmic content” to human language and what humans typically say with it. But the next question is how efficient a neural net will be at implementing a model based on that algorithmic content. And again we don’t know—although the success of ChatGPT suggests it’s reasonably efficient.

有些文本被反复输入了多次,有些只输入了一次。但不知何故,它从所看到的文本中“获得了所需”。考虑到这么多的文本供其学习,需要多大的网络才能“学得好”呢?同样,我们尚没有一个基本的理论方法来回答这个问题。归根结底,正如我们将在下面进一步讨论的那样,人类语言及其典型表达应该具有一定的“总体算法内容”。但下一个问题是神经网络在实现基于该算法内容的模型时的效率如何。我们同样不知道,尽管 ChatGPT 的成功表明其效率相当不错。

And in the end we can just note that ChatGPT does what it does using a couple hundred billion weights—comparable in number to the total number of words (or tokens) of training data it’s been given. In some ways it’s perhaps surprising (though empirically observed also in smaller analogs of ChatGPT) that the “size of the network” that seems to work well is so comparable to the “size of the training data”. After all, it’s certainly not that somehow “inside ChatGPT” all that text from the web and books and so on is “directly stored”. Because what’s actually inside ChatGPT are a bunch of numbers—with a bit less than 10 digits of precision—that are some kind of distributed encoding of the aggregate structure of all that text.

最后我们可以注意到,ChatGPT 在处理时使用了大约几百亿个权重——与其接受的训练数据的总单词数(或标记数)相当。从某种程度上说,可能令人惊讶的是(尽管在 ChatGPT 的较小类似物中也经验观察到),似乎能够良好运作的“网络规模”与“训练数据规模”如此相近。毕竟,肯定不是因为“inside ChatGPT”,网络和书籍等所有文本都是“直接存储”的。因为实际上,ChatGPT 内部是一堆数字——精度略低于 10 位数——这些数字以某种分布式编码方式表示了所有文本的总体结构。

Put another way, we might ask what the “effective information content” is of human language and what’s typically said with it. There’s the raw corpus of examples of language. And then there’s the representation in the neural net of ChatGPT. That representation is very likely far from the “algorithmically minimal” representation (as we’ll discuss below). But it’s a representation that’s readily usable by the neural net. And in this representation it seems there’s in the end rather little “compression” of the training data; it seems on average to basically take only a bit less than one neural net weight to carry the “information content” of a word of training data.

换句话说,我们可能会问,人类语言及其典型表达的“有效信息内容”是什么。有原始的语言示例语料库,然后还有 ChatGPT 神经网络中的表示。这种表示很可能远非“算法最小”的表示(我们将在下文讨论)。但这是神经网络容易使用的表示。在这种表示中,最终对训练数据的“压缩”似乎相当有限;平均而言,大约每个神经网络权重只携带了训练数据中一个词的“信息内容”。

When we run ChatGPT to generate text, we’re basically having to use each weight once. So if there are n weights, we’ve got of order n computational steps to do—though in practice many of them can typically be done in parallel in GPUs. But if we need about n words of training data to set up those weights, then from what we’ve said above we can conclude that we’ll need about n2 computational steps to do the training of the network—which is why, with current methods, one ends up needing to talk about billion-dollar training efforts.

当我们运行 ChatGPT 生成文本时,我们基本上需要一次性使用每个权重。因此,如果有 n 个权重,我们需要执行 n 个计算步骤,尽管实际上许多计算步骤通常可以在 GPU 中并行执行。但是,如果我们需要大约 n 个训练数据字来设置这些权重,那么根据我们上面的讨论,我们可以得出我们将需要大约 n² 个计算步骤来完成网络的训练——这就是为什么,使用当前方法,我们最终需要谈论十亿美元的训练投入。

11b115baeedf0f3d2a71f3879ae859df.jpeg

“点赞有美意,赞赏是鼓励”

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/25322.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

pycharm、idea、golang等JetBrains其他IDE修改行分隔符(换行符)

文章目录 pycharm、idea、golang系列修改行分隔符我应该选择什么换行符JetBrains IDE,默认行分隔符 是跟随系统修改JetBrains IDE,默认行分隔符 pycharm、idea、golang系列修改行分隔符 一般来说,不同的开发环境和项目对换行格式的使用偏好不同: Windo…

Maven: No compiler is provided in this environment.

在Eclipse中运行Maven项目,报错: No compiler is provided in this environment. Perhaps you are running on a JRE rather than a JDK? 解决方法: Windows > Preferences > Java > Installed JREs > Add > Standard VM,…

基于arcFace+faiss开发构建人脸识别系统

在上一篇博文《基于facenetfaiss开发构建人脸识别系统》中,我们实践了基于facenet和faiss的人脸识别系统开发,基于facenet后续提出来很多新的改进的网络模型,arcFace就是其中一款优秀的网络模型,本文的整体开发实现流程与前文相同…

软件测试缺陷报告

缺陷报告是描述软件缺陷现象和重现步骤地集合。软件缺陷报告Software Bug Report(SBR)或软件问题报告Software Problem Report(SPR) 作用:缺陷报告是软件测试人员的工作成果之一,体现软件测试的价值缺陷报…

针对高可靠性和高性能优化的1200V碳化硅沟道MOSFET

目录 标题:1200V SiC Trench-MOSFET Optimized for High Reliability and High Performance摘要信息解释研究了什么文章创新点文章的研究方法文章的结论 标题:1200V SiC Trench-MOSFET Optimized for High Reliability and High Performance 摘要 本文详…

Vue2 第二十一节 Vue UI组件库

移动端常用UI组件 1. Vant https://youzan.github.io/vant 2. Cube UI https://didi.github.io/cube-ui 3. Mint UI http://mint-ui.github.io PC端常用UI组件 1. Element UI https://element.eleme.cn 2. IView UI https://www.iviewui.com 一. Element UI 的引入和使…

SpringBoot项目增加logback日志文件

一、简介 在开发和调试过程中,日志是一项非常重要的工具。它不仅可以帮助我们快速定位和解决问题,还可以记录和监控系统的运行状态。Spring Boot默认提供了一套简单易用且功能强大的日志框架logback,本文将介绍如何在Spring Boot项目中配置和…

SpringBoot核心配置和注解

目录 一、注解 元注解 基本注解 启动注解 二、配置 格式介绍 读取配置文件信息 案例演示1 嵌套读取bean信息 案例演示2 读取Map,List 以及 Array 类型配置数据 案例演示3 三、总结 一、注解 之前我们了解了SpringBoot基础和AOP简单应用,这期来讲…

[Docker实现测试部署CI/CD----Jenkins集成相关服务器(3)]

目录 7、 Jenkins 集成 SonarQubeJenkins 中安装 SonarScanner下载移动修改配置文件 8、Jenkins配置SonarQube安装插件添加SonarQube添加 SonarScanner 9、Jenkins集成目标服务器 7、 Jenkins 集成 SonarQube Jenkins 中安装 SonarScanner SonarScanner 是一种代码扫描工具&am…

【stm32】初识stm32—stm32环境的搭建

文章目录 🛸stm32资料分享🍔stm32是什么🎄具体过程🏳️‍🌈安装驱动🎈1🎈2 🏳️‍🌈建立Start文件夹 🛸stm32资料分享 我用夸克网盘分享了「STM32入门教程资料…

【Android】控件与布局入门 - 简易计算器

目录 1. 基础开发环境 2. 计算器的布局和相关按钮 3. 计算器的主要运算逻辑 4. APK 文件 5. 项目源码 1. 基础开发环境 JDK:JDK17 Android Studio:Android Studio Giraffe | 2022.3.1 Android SDK:Android API 34 Gradle: gradle-8.0-bi…

参考RabbitMQ实现一个消息队列

文章目录 前言小小消息管家1.项目介绍2. 需求分析2.1 API2.2 消息应答2.3 网络通信协议设计 3. 开发环境4. 项目结构介绍4.1 配置信息 5. 项目演示 前言 消息队列的本质就是阻塞队列,它的最大用途就是用来实现生产者消费者模型,从而实现解耦合以及削峰填…

Android中简单封装Livedata工具类

Android中简单封装Livedata工具类 前言: 之前讲解过livedata和viewmodel的简单使用,也封装过room工具类,本文是对livedata的简单封装和使用,先是封装了一个简单的工具类,然后实现了一个倒计时工具类的封装. 1.LiveD…

JVM之类加载与字节码(一)

1.类文件结构 一个简单的HelloWorld.Java package cn.itcast.jvm.t5; // HelloWorld 示例 public class HelloWorld { public static void main(String[] args) { System.out.println("hello world"); } }编译为 HelloWorld.class 后的样子如下所示: […

【广州华锐视点】葡萄种植VR虚拟仿真实训平台

随着虚拟现实(VR)技术的不断发展,越来越多的教育领域开始尝试将VR技术应用于教学中。在葡萄栽培这一专业领域,我们开发了一款创新的VR实训课件,旨在为学生提供沉浸式的互动学习体验。本篇文案将为您介绍葡萄种植VR虚拟仿真实训平台所提供的互…

重型并串式液压机械臂建模与simscape仿真

一、建模 Hydraulic manipulator Figure 1 shows different constituting parts of the manipulator considered, with every part labeled using numbers from 1 to 10. For each part, a CAD model is provided. Each file is named in accordance with the corresponding la…

el-popover使用自定义图标

使用el-popover实现鼠标点击或浮动到自定义图标上弹出表格弹窗,官方文档上使用的是按钮el-button,如果想换成图标或其他的组件的话直接把el-button替换掉即可。注意替换之后的组件一定要加slot“reference”,不然组件是显示不出来的。 代码如…

阿里云二级域名配置

阿里云二级域名配置 首先需要进入阿里云控制台的域名管理 1.选择域名点击解析 2.添加记录 3.选择A类型 4.主机记录设置【可以aa.bb或者aa.bb.cc】 到时候会变成:aa.bb.***.com 5.解析请求来源设置为默认 6.记录值 设置为要解析的服务器的ip地址 7.TTL 默认即…

HDFS中的NAMENODE元数据管理(超详细)

元数据管理 元数据是什么元数据管理概述内存元数据元数据文件fsimage内存镜像文件edits log编辑日志 namenode加载元数据文件顺序 元数据管理相关目录文件元数据相关文件VERSIONseen_txid 元数据文件查看(OIV,OEV)SecondaryNameNode介绍checkpoint机制SN…

24届近5年上海大学自动化考研院校分析

今天给大家带来的是上海大学控制考研分析 满满干货~还不快快点赞收藏 一、上海大学 学校简介 上海大学是上海市属的综合性研究型大学,是教育部与上海市人民政府共建高校,是国家“211 工程”重点建设高校、上海市高水平地方大学建设高校&a…