一、问题描述
给定一个二维数组。
- 数组只有一个元素是1,是起点
- 数组只有一个元素是2,是终点
- 数组中的0是必须经过的地方
- 数组中的-1是障碍不可通过
从起始点到终点一共有多少路径?
二、思路
DFS
三、Code
1 package algorithm; 2 3 /** 4 * Created by adrian.wu on 2019/2/27. 5 */ 6 public class UniquePathIII { 7 private int sr, sc, er, ec, res, empty = 0; 8 public int uniquePathIII(int[][] grid) { 9 for (int i = 0; i < grid.length; i++) { 10 for (int j = 0; j < grid[0].length; j++) { 11 if (grid[i][j] == 0) empty++; 12 else if (grid[i][j] == 1) { 13 sr = i; 14 sc = j; 15 } 16 else if (grid[i][j] == 2) { 17 er = i; 18 ec = j; 19 empty++; 20 } 21 } 22 } 23 24 dfs(grid, sr, sc); 25 return res; 26 } 27 28 private void dfs(int[][] grid, int i, int j) { 29 if (!validRange(grid, i, j)) return; 30 if (i == er && j == ec && empty == 0) { 31 res++; 32 return; 33 } 34 grid[i][j] = -2; 35 empty--; 36 dfs(grid, i + 1, j); 37 dfs(grid, i - 1, j); 38 dfs(grid, i, j + 1); 39 dfs(grid, i, j - 1); 40 grid[i][j] = 0; 41 empty++; 42 } 43 44 private boolean validRange(int[][] grid, int i, int j) { 45 return i >= 0 && i < grid.length && j >= 0 && j < grid[0].length && grid[i][j] >= 0; 46 } 47 48 }