matlab自带的插值函数interp1的四种插值方法

x=0:2*pi;
y=sin(x);
xx=0:0.5:2*pi;%interp1对sin函数进行分段线性插值,调用interp1的时候,默认的是分段线性插值
y1=interp1(x,y,xx);
figure
plot(x,y,'o',xx,y1,'r')
title('分段线性插值')%临近插值
y2=interp1(x,y,xx,'nearest');
figure
plot(x,y,'o',xx,y2,'r');
title('临近插值')%球面线性插值
y3=interp1(x,y,xx,'spline');
figure
plot(x,y,'o',xx,y3,'r')
title('球面插值')%三次多项式插值法
y4=interp1(x,y,xx,'cubic');
figure
plot(x,y,'o',xx,y4,'r');
title('三次多项式插值')

 

 

 

(1)    Nearest方法速度最快,占用内存最小,但一般来说误差最大,插值结果最不光滑。

(2)    Spline三次样条插值是所有插值方法中运行耗时最长的,插值函数及其一二阶导函数都连续,是最光滑的插值方法。占用内存比cubic方法小,但是已知数据分布不均匀的时候可能出现异常结果。

(3)    Cubic三次多项式插值法中,插值函数及其一阶导数都是连续的,所以插值结果比较光滑,速度比Spline快,但是占用内存最多。

语法形式

说明

y=interp1(x,Y,xi)

由已知点集(x,Y)插值计算xi上的函数值

y=interp1(x,Y,xi)

相当于x=1:length(Y)的interp(x,Y,xi)

y=interp1(x,Y,xi,method)

用指定插值方法计算插值点xi上的函数值

y=interp1(x,Y,xi,method,’extrap’)

对xi中超出已知点集的插值点用指定插值方法计算函数值

y=interp1(x,Y,xi,method,’extrap’,extrapval)

用指定方法插值xi上的函数值,超出已知点集处函数值取extrapval

y=interp1(x,Y,xi,method,’pp’)

用指定方法插值,但返回结果为分段多项式

 

 

 

 

Method

方法描述

‘nearest’

最邻近插值:插值点处函数值与插值点最邻近的已知点函数值相等

‘liner’

分段线性插值:插值点处函数值由连接其最邻近的两侧点的线性函数预测。Matlab中interp1的默认方法。

‘spline’

样条插值:默认为三次样条插值。可用spline函数替代

‘pchip’

三次Hermite多项式插值,可用pchip函数替代

‘cubic’

同’pchip’,三次Hermite多项式插值

更新日志2020-11-3

有个小老弟问我,怎么把这个插值函数获取到,后续调用,然后去看了一眼官方文档,有一句话

pp = interp1(x,v,method,'pp')

分段多项式,以可传递到 ppval 函数进行计算的结构体的形式返回。

也就是说这个插值函数可以使用上述代码获取到函数,然后使用ppval执行这个函数在某个特定位置的插值结果,比如

%test interpolate
clear;clc;close all
N=1200;
x = 1:0.5:6;
y = sin(x);
pp = interp1(x,y,'pchip','pp');xq= 1:0.1:6;
result = ppval(pp,xq);
plot(x,y,'o',xq,result,'-.')

上述代码就是将函数以`pp`变量返回,然后使用ppval调用此函数,获取在xq处的值

 

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/246788.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

拉格朗日插值法(Lagrange)

拉格朗日插值法是基于基函数的插值方法,插值多项式可以表示为: 其中称为 i 次基函数 Matlab中拉格朗日插值法函数为:Language 功能:求已知点数据点的拉格朗日多项式 调用格式:fLagrange(x,y) 或者 f ’Lagrange(x,y,x0) 其中&a…

当你在应用机器学习时你应该想什么

如今, 机器学习变得十分诱人, 它已在网页搜索, 商品推荐, 垃圾邮件检测, 语音识别, 图像识别, 自然语言处理等诸多领域发挥重要作用. 和以往我们显式地通过编程告诉计算机如何进行计算不同, 机器学习是一种数据驱动方法(data-driven approach). 然而, 有时候机器学习像是一种”…

利用均差的牛顿插值法(Newton)

函数f的零阶均差定义为 ,一阶定义均差为: 一般地,函数f 的k阶均差定义为: 或者上面这个式子求的k1阶均差 利用均差的牛顿插值法多项式为: 简单计算的时候可以观看下面的差商(均差)表&#xff1a…

深度学习(Deep Learning)读书思考三:正则化

概述 正则化是机器学习中非常重要并且非常有效的减少泛华误差的技术,特别是在深度学习模型中,由于其模型参数非常多非常容易产生过拟合。因此研究者也提出很多有效的技术防止过拟合,比较常用的技术包括: 参数添加约束,…

利用差分的牛顿插值法(Newton)

差分牛顿插值法要求是等距的。 先来看三个概念 差分与均差的关系如下: 牛顿(Newton)插值的基本公式为: 由于差分插值是等距的,所以可以设xx0nh 对于上式 再由差分和均差的关系,可以将上面的黄色部分也就是牛顿插值基本公式转换…

埃尔米特(Hermite)插值

Hermite插值满足在节点上等于给定函数值,而且在节点上的导数值也等于给定的导数值。对于高阶导数的情况,Hermite插值多项式比较复杂,在实际情况中,常常遇到的是函数值与一阶导数给定的情况。在此情况下,n个节点x1,x2,……

keras创建模型

关于Keras模型 Keras有两种类型的模型,序贯模型(Sequential)和函数式模型(Model),函数式模型应用更为广泛,序贯模型是函数式模型的一种特殊情况。 Sequential models:这种方法用于实…

多项式曲线拟合最小二乘法

对给定的试验数据点(xi,yi)(i1,2,……,n),可以构造m次多项式 数据拟合的最简单的做法就是使误差p(xi)-yi的平方和最小 当前任务就是求一个P(x)使得 从几何意义上讲就是寻求给与定点(xi,yi)距离的平方和最小的曲线yp(x),函数p(x)称为拟合函数或者是最小二乘解&#x…

运动合成——机器学习技术

参考文献:《人体运动合成中的机器学习技术合成综述》 根据机器学习的用途分类,在图形学中使用到的大致如下: 1> 回归和函数逼近。回归是一种插值技术,分析已知数据点来合成新的数据。 2> 降维。从高维数的运动数据…

ICA独立成分分析—FastICA基于负熵最大

1. 概念 官方解释:利用统计原理进行计算的方法,是一种线性变换。 ICA分为基于信息论准则的迭代算法和基于统计学的代数方法两大类,如FastICA算法,Infomax算法,最大似然估计算法等。 这里主要讨论FastICA算法。 先来…

tensorboard的可视化及模型可视化

待整理 How to Check-Point Deep Learning Models in Keras LossWise Tensorboard 中文社区 谷歌发布TensorBoard API,让你自定义机器学习中的可视化 查找tensorflow安装的位置 pip show tensorflow-gpu Name: tensorflow-gpu Version: 1.0.1 Summary: TensorFl…

隐马尔科夫模型——简介

1. 前言 学习了概率有向图模型和概率无向图模型,回头再看了一下隐马尔可夫模型(hidden Markov model,HMM)。 HMM属于树状有向概率图模型,主要用于对时序数据的建模,它的潜在变量是离散的;而另一种状态空间模型&…

训练的神经网络不工作?一文带你跨过这37个坑

近日,Slav Ivanov 在 Medium 上发表了一篇题为《37 Reasons why your Neural Network is not working》的文章,从四个方面(数据集、数据归一化/增强、实现、训练),对自己长久以来的神经网络调试经验做了 37…

HMM——前向算法与后向算法

1. 前言 前向算法和后向算法主要还是针对HMM三大问题之一的评估问题的计算,即给定模型参数,计算观察序列的概率。文章不介绍过多公式,主要看两个例子 复习一下HMM的三大要素(以海藻(可观测)和天气&#x…

HMM——维特比算法(Viterbi algorithm)

1. 前言 维特比算法针对HMM第三个问题,即解码或者预测问题,寻找最可能的隐藏状态序列: 对于一个特殊的隐马尔可夫模型(HMM)及一个相应的观察序列,找到生成此序列最可能的隐藏状态序列。 也就是说给定了HMM的模型参数和一个观测…

HMM——前向后向算法

1. 前言 解决HMM的第二个问题:学习问题, 已知观测序列,需要估计模型参数,使得在该模型下观测序列 P(观测序列 | 模型参数)最大,用的是极大似然估计方法估计参数。 根据已知观测序列和对应的状态序列,或者说…

Web安全(吴翰清)

安全工程师的核心竞争力不在于他能拥有多少个 0day,掌握多少种安全技术,而是在于他对安全理解的深度,以及由此引申的看待安全问题的角度和高度。 第一篇 我的安全世界观 脚本小子 “Script Kids”。 黑客精神所代表的 Open、Free、Share。…

机器学习两种方法——监督学习和无监督学习(通俗理解)

前言 机器学习分为:监督学习,无监督学习,半监督学习(也可以用hinton所说的强化学习)等。 在这里,主要理解一下监督学习和无监督学习。 监督学习(supervised learning) 从给定的训…

Tensorflow中padding的两种类型SAME和VALID

边界补充问题 原始图片尺寸为7*7,卷积核的大小为3*3,当卷积核沿着图片滑动后只能滑动出一个5*5的图片出来,这就造成了卷积后的图片和卷积前的图片尺寸不一致,这显然不是我们想要的结果,所以为了避免这种情况&#xff…

机器学习两种距离——欧式距离和马氏距离

我们熟悉的欧氏距离虽然很有用,但也有明显的缺点。它将样品的不同属性(即各指标或各变量)之间的差别等同看待,这一点有时不能满足实际要求。例如,在教育研究中,经常遇到对人的分析和判别,个体的…