首先,在我看来,你根本没有平均列的平均值,你只是一次平均两个数据点。在我看来,你最好不要使用reshaping数组,这样你就有了一个可以直接提供给mean的Nx2数据结构。如果列数不太兼容,可能必须先填充它。然后在最后,对填充的余数列和它前面的列进行加权平均。最后重塑到你想要的形状。在
以TheodrosZelleke提供的例子为例:In [1]: data = np.concatenate((data, np.array([[5, 6, 7, 8]]).T), 1)
In [2]: data
Out[2]:
array([[7, 9, 7, 2, 5],
[7, 6, 1, 5, 6],
[8, 1, 0, 7, 7],
[8, 3, 3, 2, 8]])
In [3]: cols = data.shape[1]
In [4]: j = 2
In [5]: dataPadded = np.concatenate((data, np.zeros((data.shape[0], j - cols % j))), 1)
In [6]: dataPadded
Out[6]:
array([[ 7., 9., 7., 2., 5., 0.],
[ 7., 6., 1., 5., 6., 0.],
[ 8., 1., 0., 7., 7., 0.],
[ 8., 3., 3., 2., 8., 0.]])
In [7]: dataAvg = dataPadded.reshape((-1,j)).mean(axis=1).reshape((data.shape[0], -1))
In [8]: dataAvg
Out[8]:
array([[ 8. , 4.5, 2.5],
[ 6.5, 3. , 3. ],
[ 4.5, 3.5, 3.5],
[ 5.5, 2.5, 4. ]])
In [9]: if cols % j:
dataAvg[:, -2] = (dataAvg[:, -2] * j + dataAvg[:, -1] * (cols % j)) / (j + cols % j)
dataAvg = dataAvg[:, :-1]
....:
In [10]: dataAvg
Out[10]:
array([[ 8. , 3.83333333],
[ 6.5 , 3. ],
[ 4.5 , 3.5 ],
[ 5.5 , 3. ]])