朴素贝叶斯法_naive_Bayes

朴素贝叶斯法(naive Bayes)是基于贝叶斯定理与特征条件独立假设的分类方法。对于给定的训练数据集,首先基于特征条件独立假设学习输入输出的联合概率分布;然后基于此模型,对给定的输入 x x x,利用贝叶斯定理求出后验概率最大的输出 y y y

基本方法:

设输入空间 X ⊆ R n X\subseteq R^n XRn n n n维向量的集合,输出空间为类标记集合 Y = { c 1 , c 2 , . . . , c k } Y=\{c_1,c_2,...,c_k\} Y={c1,c2,...,ck}。输入为特征向量 x ∈ X x\in X xX,输出为类标记 y ∈ Y y\in Y yY X X X是定义在输入空间 X X X上的随机向量, Y Y Y是定义在输出空间 Y Y Y上的随机变量。 P ( X , Y ) P(X,Y) P(X,Y) X X X Y Y Y的联合概率分布。训练集 T = { ( x 1 , y 1 ) , ( x 2 , y 2 ) , . . . , ( x N , y N ) } T=\{(x_1,y_1),(x_2,y_2),...,(x_N,y_N)\} T={(x1,y1),(x2,y2),...,(xN,yN)} P ( X , Y ) P(X,Y) P(X,Y)独立同分布产生。

朴素贝叶斯算法就是通过训练数据集学习联合概率分布 P ( X , Y ) P(X,Y) P(X,Y)

具体地,学习以下先验概率分布及条件概率分布。
先验概率分布: P ( Y = C k ) , k = 1 , 2 , . . . , K P(Y=C_k), \quad k=1,2,...,K P(Y=Ck),k=1,2,...,K
条件概率分布: P ( X = x ∣ Y = C k ) = P ( X ( 1 ) = x ( 1 ) , . . . , X ( n ) = x ( n ) ∣ Y = C k ) , k = 1 , 2 , . . . , K P(X=x|Y=C_k)=P(X^{(1)}=x^{(1)},...,X^{(n)}=x^{(n)}|Y=C_k),\quad k=1,2,...,K P(X=xY=Ck)=P(X(1)=x(1),...,X(n)=x(n)Y=Ck),k=1,2,...,K

由于条件概率分布 P ( X = x ∣ Y = C k ) P(X=x|Y=C_k) P(X=xY=Ck)由指数级数量的参数,其估计实际是不可能的。事实上,假设特征 X ( j ) X^{(j)} X(j)可能的取值有 S j S_j Sj个, j = 1 , 2 , . . . , n j=1,2,...,n j=1,2,...,n Y Y Y可能取值有 K K K个,那么参数个数为 K ∏ j = 1 n S j K\prod_{j=1}^{n}S_j Kj=1nSj个。

于是朴素贝叶斯算法对条件概率分布作出了条件独立性的假设。这是一个非常强的假设,等于是说用于分类的特征在类确定的条件下都是条件独立的,具体地,条件独立性假设是
P ( X = x ∣ Y = C k ) = P ( X ( 1 ) = x ( 1 ) , . . . , X ( n ) = x ( n ) ∣ Y = C k ) P(X=x|Y=C_k)=P(X^{(1)}=x^{(1)},...,X^{(n)}=x^{(n)}|Y=C_k) P(X=xY=Ck)=P(X(1)=x(1),...,X(n)=x(n)Y=Ck)
= ∏ j = 1 n P ( X ( j ) = x ( j ) ∣ Y = C k ) \qquad \quad =\prod_{j=1}^{n}P(X^{(j)}=x^{(j)}|Y=C_k) =j=1nP(X(j)=x(j)Y=Ck)

朴素贝叶斯算法在进行分类时,对给定的输入 x x x,通过学习到的模型计算后验概率分布 P ( Y = C k ∣ X = x ) P(Y=C_k|X=x) P(Y=CkX=x),然后将后验概率最大的类作为 x x x的输出。后验概率计算根据贝叶斯定理进行:
P ( Y = C k ∣ X = x ) = P ( X = x ∣ Y = C k ) P ( Y = C k ) ∑ k P ( X = x ∣ Y = C k ) P ( Y = C k ) P(Y=C_k|X=x)=\frac{P(X=x|Y=C_k)P(Y=C_k)}{\sum_{k}P(X=x|Y=C_k)P(Y=C_k)} P(Y=CkX=x)=kP(X=xY=Ck)P(Y=Ck)P(X=xY=Ck)P(Y=Ck)
= P ( Y = C k ) ∏ j P ( X ( j ) = x ( j ) ∣ Y = C k ) ∑ k P ( Y = C k ) ∏ j P ( X ( j ) = x ( j ) ∣ Y = C k ) \qquad \qquad \qquad \qquad=\frac{P(Y=C_k)\prod_{j}P(X^{(j)}=x^{(j)}|Y=C_k)}{\sum_{k}P(Y=C_k)\prod_{j}P(X^{(j)}=x^{(j)}|Y=C_k)} =kP(Y=Ck)jP(X(j)=x(j)Y=Ck)P(Y=Ck)jP(X(j)=x(j)Y=Ck)

于是,朴素贝叶斯分类器可表示为
y = f ( x ) = a r g max ⁡ C k P ( Y = C k ) ∏ j P ( X ( j ) = x ( j ) ∣ Y = C k ) ∑ k P ( Y = C k ) ∏ j P ( X ( j ) = x ( j ) ∣ Y = C k ) y=f(x)=arg\max_{C_k}\frac{P(Y=C_k)\prod_{j}P(X^{(j)}=x^{(j)}|Y=C_k)}{\sum_{k}P(Y=C_k)\prod_{j}P(X^{(j)}=x^{(j)}|Y=C_k)} y=f(x)=argCkmaxkP(Y=Ck)jP(X(j)=x(j)Y=Ck)P(Y=Ck)jP(X(j)=x(j)Y=Ck)

由于分母对所有的类都是相同的,所以
y = f ( x ) = a r g max ⁡ C k P ( Y = C k ) ∏ j P ( X ( j ) = x ( j ) ∣ Y = C k ) y=f(x)=arg\max_{C_k}P(Y=C_k)\prod_{j}P(X^{(j)}=x^{(j)}|Y=C_k) y=f(x)=argCkmaxP(Y=Ck)jP(X(j)=x(j)Y=Ck)

算法:
输入:训练集 T = { ( x 1 , y 1 ) , ( x 2 , y 2 ) , . . . , ( x N , y N ) } T=\{(x_1,y_1),(x_2,y_2),...,(x_N,y_N)\} T={(x1,y1),(x2,y2),...,(xN,yN)},其中 x i = ( x i ( 1 ) , x i ( 2 ) , . . . , x i ( n ) ) T x_i=(x_i^{(1)},x_i^{(2)},...,x_i^{(n)})^T xi=(xi(1),xi(2),...,xi(n))T x i ( j ) x_i^{(j)} xi(j)是第 i i i个样本的第 j j j个特征, x i ( j ) ∈ { a j 1 , a j 2 , . . . , a j S j } x_i^{(j)} \in \{a_{j1},a_{j2},...,a_{jS_j}\} xi(j){aj1,aj2,...,ajSj} a j l a_{jl} ajl是第 j j j个特征可能取的第 l l l个值, j = 1 , 2 , . . . , n j=1,2,...,n j=1,2,...,n l = 1 , 2 , . . . , S j l=1,2,...,S_j l=1,2,...,Sj y i ∈ { C 1 , C 2 , . . . , C k } y_i \in \{C_1,C_2,...,C_k\} yi{C1,C2,...,Ck};实例 x x x
输出:实例 x x x的分类。

  1. 计算先验概率及条件概率
    P ( Y = C k ) = ∑ i = 1 N I ( y i = C k ) N , k = 1 , 2 , . . . , k P(Y=C_k)=\frac{\sum_{i=1}^{N}I(y_i=C_k)}{N}, \qquad k=1,2,...,k P(Y=Ck)=Ni=1NI(yi=Ck),k=1,2,...,k
    P ( X ( j ) = a j l ∣ Y = C k ) = ∑ i = 1 N I ( x ( j ) = a j l , y i = C k ) ∑ i = 1 N I ( y i = C k ) P(X^{(j)}=a_{jl}|Y=C_k)=\frac{\sum_{i=1}^{N}I(x^{(j)}=a_{jl},y_i=C_k)}{\sum_{i=1}^{N}I(y_i=C_k)} P(X(j)=ajlY=Ck)=i=1NI(yi=Ck)i=1NI(x(j)=ajl,yi=Ck)
    j = 1 , 2 , . . . , n ; l = 1 , 2 , . . . , S j ; k = 1 , 2 , . . . , K \qquad j=1,2,...,n; \quad l=1,2,...,S_j; \quad k=1,2,...,K j=1,2,...,n;l=1,2,...,Sj;k=1,2,...,K
  2. 对于给定实例 x = ( x ( 1 ) , x ( 2 ) , . . . , x ( n ) ) T x={(x^{(1)},x^{(2)},...,x^{(n)})}^T x=(x(1),x(2),...,x(n))T,计算(这里用到了特征条件独立假设)
    P ( Y = C k ) ∏ j = 1 n P ( X ( j ) = x ( j ) ∣ Y = C k ) , k = 1 , 2 , . . . , K P(Y=C_k)\prod_{j=1}^{n}P(X^{(j)}=x^{(j)}|Y=C_k),\qquad k=1,2,...,K P(Y=Ck)j=1nP(X(j)=x(j)Y=Ck),k=1,2,...,K
  3. 确定实例 x x x的分类
    y = a r g max ⁡ C k P ( Y = C k ) ∏ j = 1 n P ( X ( j ) = x ( j ) ∣ Y = C k ) y=arg\max_{C_k}P(Y=C_k)\prod_{j=1}^{n}P(X^{(j)}=x^{(j)}|Y=C_k) y=argCkmaxP(Y=Ck)j=1nP(X(j)=x(j)Y=Ck)

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/242031.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

设计模式之-单列设计模式,5种单例设计模式使用场景以及它们的优缺点

系列文章目录 设计模式之-6大设计原则简单易懂的理解以及它们的适用场景和代码示列 设计模式之-单列设计模式,5种单例设计模式使用场景以及它们的优缺点 设计模式之-3种常见的工厂模式简单工厂模式、工厂方法模式和抽象工厂模式,每一种模式的概念、使用…

抖音网红罗盘时钟改良版

文章目录 💕效果展示💕代码展示HTML💕效果展示 💕代码展示 HTML <!DOCTYPE html> <html lang=

61 贪心算法解救生艇问题

问题描述&#xff1a;第i个人的体重为peaple[i],每个船可以承载的最大重量为limit。每艘船最多可以同时载两人&#xff0c;但条件是这些人的重量之和最多为limit&#xff0c;返回载到每一个人多虚的最小船数&#xff0c;(保证每个人被船载)。 贪心算法求解&#xff1a;先将数组…

【BBuf的CUDA笔记】十,Linear Attention的cuda kernel实现解析

欢迎来 https://github.com/BBuf/how-to-optim-algorithm-in-cuda 踩一踩。 0x0. 问题引入 Linear Attention的论文如下&#xff1a; Transformers are RNNs: Fast Autoregressive Transformers with Linear Attention&#xff1a;https://arxiv.org/pdf/2006.16236.pdf 。官方…

微信小程序-textarea组件字数实时更新

一、前言 本文实现的是在小程序中&#xff0c;textarea文本框输入文字后&#xff0c;实时显示文字的字数&#xff0c;获取更好的用户输入体验以及提示。 下图是实现的效果 二、代码实现 2-1、wxml代码 <view style"padding: 30rpx;"><view style"…

MySQL 数据库系列课程 04:MySQL Workbench的安装

Workbench 是 MySQL 官方推出的免费的强大的可视化工具&#xff0c;不熟悉命令行工具的人&#xff0c;可以安装这一款软件&#xff0c;通过编写 SQL 进行数据库中数据的增删改查操作&#xff0c;接下来我们详细说明一下 Workbench 的安装。 一、Windows安装Workbench &#x…

minicube搭建golang容器服务

引言 最近在自己电脑上搭建一个小型k8s环境&#xff0c;以学习云原生相关内容。这里我主要分为三部分记录&#xff1a; 容器及容器编排理论环境安装相关rpcx服务实战 还在调试中&#xff0c;先总结整理下&#xff0c;这里后续补充上我的github工程链接。 一、容器及容器编排理…

java八股 redis

Redis篇-01-redis开篇_哔哩哔哩_bilibili 1.缓存穿透 2.缓存击穿 逻辑过期里的互斥锁是为了保证只有一个线程去缓存重建 3.缓存雪崩 4.双写一致性 4.1要求一致性&#xff08;延迟双删/互斥锁&#xff09; 延迟双删无法保证强一致性 那么前两步删缓和更新数据库哪个先呢&#xf…

基于Java SSM框架实现实现定西扶贫惠农推介志愿者系统项目【项目源码+论文说明】

基于java的SSM框架实现定西扶贫惠农推介志愿者系统演示 摘要 扶贫工作是党中央、国务院的一项重要战略部署。党政机关定点扶贫是中国扶贫开发战略部署的重要组成部分&#xff0c;是新阶段扶贫开发的一项重大举措&#xff0c;对推动贫困地区经济社会的发展有着积极的意义。 本…

Linux命令的操作练习

1.创建ss别名&#xff0c;查看长格式详细信息 alias ssls -l 2.创建ss别名&#xff0c;复制boot文件夹下的内容到data文件夹下 alias sscp -r /boot /data 3.删除别名ss unalias ss 4. 复制test文件夹下的passwd文件到qq文件夹下&#xff0c;并改名为ww cp test/pas…

Ethercat“配置从站地址”报文分析(0x0010:0x0011)

基于IgH主站接了3个从站&#xff0c;分析报文。 涉及的从站寄存器&#xff1a;Configured Station Address 0x0010:0x0011。 使用场景举例&#xff1a; IgH启动后&#xff0c;通过“配置从站地址”报文将所有从站地址清零&#xff0c;然后通过APWR指令“配置从站地址”报文&a…

MinIO客户端之stat

MinIO提供了一个命令行程序mc用于协助用户完成日常的维护、管理类工作。 官方资料 mc stat 获取指定桶或者对象的信息&#xff0c;包含对象的元数据。 指定桶bkt1&#xff0c;查看信息&#xff0c;命令如下&#xff1a; ./mc stat --recursive local1/bkt1控制台的输出&…

TIA博途Wincc_通过VBS脚本实现电机风扇或水泵旋转动画的具体方法

TIA博途Wincc_通过VBS脚本实现电机风扇或水泵旋转动画的具体方法 前面和大家介绍了通过在PLC中编程,结合HMI的图形IO域实现电机风扇或水泵旋转动画的具体方法,详细内容可参考以下链接: TIA博途Wincc中制作电机风扇或水泵旋转动画的具体方法示例 本次和大家分享通过VBS脚本实…

windows下使用vccode+cmake编译cuda程序

1、在vscode中安装Nsight Visual Studio Code Edition 在vscode中安装插件能够对cuda的代码进行语法检查 2、编写cuda程序 #include <iostream>__global__ void mykernelfunc(){}; int main() {mykernelfunc<<<1,1>>>();std::cout << "hel…

华为OD机试 - 亲子游戏(Java JS Python C)

题目描述 宝宝和妈妈参加亲子游戏,在一个二维矩阵(N*N)的格子地图上,宝宝和妈妈抽签决定各自的位置,地图上每个格子有不同的糖果数量,部分格子有障碍物。 游戏规则是妈妈必须在最短的时间(每个单位时间只能走一步)到达宝宝的位置,路上的所有糖果都可以拿走,不能走障…

Tiny Object Detection

文章目录 RFLA: Gaussian Receptive Field based Label Assignment for Tiny Object Detection&#xff08;ECCV2022&#xff09;Dynamic Coarse-to-Fine Learning for Oriented Tiny Object Detection&#xff08;CVPR2023&#xff09;TOD-CMLNN&#xff08;2023&#xff09; …

C/C++中double类型的比较

C/C中double类型的比较C/C中double类型的比较 由于double浮点数的精度问题&#xff0c;所以在比较大小的时候&#xff0c;不能像int整数型那样&#xff0c;直接if(ab)&#xff0c;if(a<b)&#xff0c;if(a>b) 要使用一个精度EPS&#xff1a; #include <math.h> …

OpenSource - SCM服务管理平台

文章目录 官方网址文档下载版本功能解决了哪些问题使用对象优势Linxu版本scm-dev deb服务列表 Windows版本scm-dev 服务列表scm-all 服务列表scm-jdk 服务列表scm-springboot 精简版本服务列表scm-springboot 服务列表scm-tomcat 服务列表 SCM 截图 官方网址 https://scm.chus…

RabbitMQ入门指南(七):生产者可靠性

专栏导航 RabbitMQ入门指南 从零开始了解大数据 目录 专栏导航 前言 一、消息丢失的可能性 1.发送消息时丢失&#xff1a; 2.MQ导致消息丢失&#xff1a; 3.消费者处理消息时消息丢失&#xff1a; 二、生产者可靠性 1.生产者重试机制 2.生产者确认机制 总结 前言 Ra…

Plantuml之对象图语法介绍(十九)

简介&#xff1a; CSDN博客专家&#xff0c;专注Android/Linux系统&#xff0c;分享多mic语音方案、音视频、编解码等技术&#xff0c;与大家一起成长&#xff01; 优质专栏&#xff1a;Audio工程师进阶系列【原创干货持续更新中……】&#x1f680; 优质专栏&#xff1a;多媒…