机器学习算法(11)——集成技术(Boosting——梯度提升)

一、说明

        在在这篇文章中,我们学习了另一种称为梯度增强的集成技术。这是我在机器学习算法集成技术文章系列中与bagging一起介绍的一种增强技术。我还讨论了随机森林和 AdaBoost 算法。但在这里我们讨论的是梯度提升,在我们深入研究梯度提升之前,了解决策树很重要。因此,如果您不熟悉决策树,那么理解梯度提升可能并不容易。请参阅本文以更好地了解决策树。        

二、建立模型

        我们以身高最喜欢的颜色、性别作为独立特征,体重作为输出特征的数据集为例。我们有 6 条记录。

2.1 步骤1:

        决策树的第一步是计算基本模型,它是所有权重的平均值

Average Salary(ŷ)  = (88 + 76 + 56 + 73 + 77 + 57)/ 6 = 71.17 ≈ 71

        当我们给出训练数据集时,预测值为71.17。这只是我们计算的平均工资。为了更好的解释,我们将其用作≈71 。

2.2 第2步:

        在第二步中,我们将计算残差,也称为伪残差。在回归中,我们使用损失函数来计算误差。有不同的损失函数,例如均方误差、回归和对数损失的均方根误差以及分类的铰链损失。根据所选的损失函数,我们将计算残差。在这种情况下,我们将使用一个简单的损失函数。损失将通过从预测值中减去实际值来计算(例如,我们使用此计算),从而产生一个名为R1的新列,表示残差。

        例如,如果我们从 88 中减去 71 ,则第一条记录的残差将为17

2.3 步骤3:

        建立好这个基础模型后,我们将依次添加一棵决策树。在这个决策树中,我的输入是身高、最喜欢的颜色和性别。我的依赖特征不是重量。这将是残余误差 R1。基于此我们可以创建决策树。

        现在我们有了一个基本模型和一个决策树。我们已经训练了决策树。当我们将新数据传递给决策树时,它将预测残差值的输出。我们将其命名为残差 2(R2)输出。

        在此基础上,让我们检查一下预测的进展情况。假设我们得到这样的 R2 值。

R2 值

        因此,每当我们通过基本模型获取第一条记录时,它将是71(我们计算的平均值)。转到决策树 1,我们将获得一些残差值。从上图中,您可以看到我们获得的第一条记录的残差值(R2)为 15 。如果我们将其与 71 相加,我们将得到一个值86,该值非常接近实际值。

1st Record
==================
R1 = 15
Average Weight = 71
Predicted Weight = 71 + 15 = 86

        然而,这凸显了决策树模型中的过度拟合问题。我们想要创建一个具有低方差和低偏差的通用模型。在这种情况下,我们的偏差较低,但方差较高,这意味着当引入新的测试数据时,该值可能会下降。为了解决这个问题,我们将向模型添加学习率Alpha (α)和 R2 值。学习率应该在 0 到 1 之间。

Assume α = 0.1
Predicted Weight  = Avearge Weight + α (R2 Value)= 71 + (0.1)15 = 72.5

在这里您可以看到72.5,这与实际重量存在显着差异。将根据残差 2(R2) 值和相同的独立特征添加额外的决策树来解决此问题。该决策树将依次计算我的下一个残差。通用公式可以写成:

F(x) = h0x + α1 h1x + α2 h2x + α3 h3x + ....... + αn hnxF(x) = i = 1 -> n Σ αi hixh0x = Base Model 
hnxn = Output given by any desicion tree

目标是通过根据残差顺序创建决策树来减少残差。Alpha(α)次要参数将使用次要参数调整来决定。

基本上,在基本模型之后,我们会依次使用决策树来增强模型。这就是为什么它被称为增强技术。

三、该算法背后的伪代码

        现在我们将深入研究我们创建的伪算法背后的数学原理。尽管看起来很复杂,但我们将分解每个步骤以帮助您理解该过程。我们使用的数据集包括身高、喜欢的颜色、性别和体重,共有 6 条记录。身高、喜欢的颜色和性别是我的独立特征,体重是我的从属特征

3.1 遵循伪算法所需的基本步骤

  • 提供输入——独立和相关特征。
  • 提供损失函数——这对于分类问题(对数损失和铰链损失)或回归问题(均方误差、均方根误差)可能有所不同。所有的损失函数应该是可微的(能够求导数)。
  • 找出梯度提升算法中需要多少棵树。

3.2 计算步骤

3.2.1 步骤1 -

        梯度提升的第一步是构建一个基础模型来预测训练数据集中的观察结果。为简单起见,我们取目标列 (ŷ) 的平均值,并假设其为预测值,如红色列下方所示。

为什么我说我们取目标列的平均值?嗯,这涉及到数学。从数学上讲,第一步可以写为:

---------------------------------------------
F0(x) = arg min γ (i = 1 -> n Σ Loss(y,γ))
---------------------------------------------L      = loss function
γ      = predicted value
argmin = we have to find a predicted value/γ for which the loss function is minimum.Loss Function (Regresion)
==========================
Loss  = [i = 0 -> n Σ 1/n (yi - γi)²]yi     = observed value (weight)
γ      = predicted value// Now we need to find a minimum value of γ such that this loss function is minimum. 
// We use to differentiate this loss function and then put it equal to 0 right? Yes, we will do the same here.
d(Loss)/ dγ = d([i = 0 -> n Σ 1/n (yi - γi)²])/ dγ
d(Loss)/ dγ = 2/2(i = 0 -> n Σ (yi - γi)) * (-1) = - (i = 0 -> n Σ (yi - γi)) - equation 1// Let’s see how to do this with the help of our example. 
// Remember that yi is our observed value and γi is our predicted value, by plugging the values in the above formula we get:
d(Loss)/ dγ = - [88 - γ + 76 - γ + 56 - + 73 - γ + 77 - γ + 57 - γ]= - 427 + 6γd(Loss)/ dγ = 0 
- 427 + 6γ  = 0
6γ          = 427
γ           = 71.16 ≈ 71// We end up over an average of the observed weight and this is why I asked you to take the average of the target column and assume it to be your first prediction.Hence for γ=71, the loss function will be minimum so this value will become our prediction for the base model.
==============================================================================================================

3.2.2 第2步-

        下一步是计算伪残差,即(观测值 - 预测值)。图中R1是计算出的残值。

        问题又来了,为什么只是观察到预测?一切都有数学证明,我们看看这个公式从何而来。这一步可以写成:

----------------------------------
rim = - [dL(y1, F(x1)) / dF(x1)]
----------------------------------F(xi) = previous model output
m     = number of DT made// From the equation 1 We are just taking the derivative of loss function
d(Loss)/ dγ = - (i = 0 -> n Σ (yi - γi)) = -(i = 0 -> n Σ (Observed - Predicted))// If you see the formula of residuals above, we see that the derivative of the loss function is multiplied by a negative sign, so now we get:
Observed - Predicted
// The predicted value here is the prediction made by the previous model. 
// In our example the prediction made by the previous model (initial base model prediction) is 71, to calculate the residuals our formula becomes:
(Observed - 71)Finding the rim values for the dataset
-----------------------------------------
r11 = 1st Record of model 1 = (y - ŷ) = 88 - 71 = 17
r21 = 2nd Record of model 1 = (y - ŷ) = 76 - 71 = 5
r31 = 3rd Record of model 1 = (y - ŷ) = 56 - 71 = -15
r41 = 4th Record of model 1 = (y - ŷ) = 73 - 71 = 2
r51 = 5th Record of model 1 = (y - ŷ) = 77 - 71 = 6
r61 = 6th Record of model 1 = (y - ŷ) = 57 - 71 = -14

3.2.3 步骤3—

        下一步,我们将根据这些伪残差建立模型并进行预测。我们为什么要做这个?

        因为我们希望最小化这些残差,最小化残差最终将提高我们的模型准确性和预测能力。因此,使用残差作为目标和原始特征高度最喜欢的颜色和性别,我们将生成新的预测。请注意,在这种情况下,预测将是错误值,而不是预测的权重,因为我们的目标列现在是错误的(R1)

3.2.4 步骤4 -

        在此步骤中,我们找到决策树每个叶子的输出值。这意味着可能存在1 个叶子获得超过 1 个残差的情况,因此我们需要找到所有叶子的最终输出。为了找到输出,我们可以简单地取叶子中所有数字的平均值,无论只有 1 个数字还是多于 1 个数字。

        让我们看看为什么我们要取所有数字的平均值。从数学上讲,该步骤可以表示为:

-----------------------------------------------
γm = argmin γ [i = 1 -> n Σ L(y1, Fm-1(x1) + γhm(xi))]
-------------------------------------------------hm(xi) = DT made on residuals
m      = number of DT
γm     = output value of a particular leaf // m = 1 we are talking about the 1st DT and when it is “M” we are talking about the last DT.
// The output value for the leaf is the value of γ that minimizes the Loss function[Fm-1(xi)+ γhm(xi))] = This is similar as step 1 equation but here the difference is that we are taking previous predictions whereas earlier there was no previous prediction.Let’s understand this even better with the help of an example. Suppose this is our regressor tree:Height(> 1.5)/            \/              \/                \Fav Clr               Gender/ \                    / \/   \                  /   \/     \                /     \R1,1     R2,1           R3,1    R4,117        5, 2           -15    6, -14γm = argmin γ [i = 1 -> n Σ L(y1, Fm-1(x1) + γhm(xi))]
// Using lost function we can write this as,
L(y1, Fm-1(x1) + γhm(xi) = 1/2 (y1 - (Fm-1(x1) + γhm(xi)))^2
Then,
γm = argmin γ [i = 1 -> n Σ 1/2 (y1 - (Fm-1(x1) + γhm(xi)))^2]Let's see 1st residual goes in R1,1
γ1,1 = argmin 1/2(80 - (71 + γ))^2//Now we need to find the value for γ for which this function is minimum. 
// So we find the derivative of this equation w.r.t γ and put it equal to 0.
d (γ1,1) / d γ = d (1/2(88 - (71 + γ))^2) / dγ
0              = d (1/2(88 - (71 + γ))^2) / dγ
80 - (71 + γ)  = 0
γ              = 17Let's see 1st residual goes in R2,1
γ2,1 = argmin 1/2(76 - (71 + γ))^2  +  1/2(73 - (71 + γ))^2//Now we need to find the value for γ for which this function is minimum. 
// So we find the derivative of this equation w.r.t γ and put it equal to 0.
d (γ2,1) / d γ = d (1/2(76 - (71 + γ))^2  +  1/2(73 - (71 + γ))^2) / dγ
0              = d (1/2(76 - (71 + γ))^2  +  1/2(73 - (71 + γ))^2) / dγ
-2γ + 5 + 2    = 0
γ              =  7 /2 = 3.5Let's see 1st residual goes in R3,1
γ3,1 = argmin 1/2(56 - (71 + γ))^2 //Now we need to find the value for γ for which this function is minimum. 
// So we find the derivative of this equation w.r.t γ and put it equal to 0.
d (γ3,1) / d γ = d (1/2(56 - (71 + γ))^2) / dγ
0              = d (1/2(56 - (71 + γ))^2) / dγ
-γ - 15        = 0
γ              = -15Let's see 1st residual goes in R4,1
γ4,1 = argmin 1/2(77 - (71 + γ))^2  +  1/2(57 - (71 + γ))^2//Now we need to find the value for γ for which this function is minimum. 
// So we find the derivative of this equation w.r.t γ and put it equal to 0.
d (γ4,1) / d γ = d (1/2(77 - (71 + γ))^2  +  1/2(57 - (71 + γ))^2) / dγ
0              = d (1/2(77 - (71 + γ))^2  +  1/2(57 - (71 + γ))^2) / dγ
-2γ + 6 -14    = 0
γ              =  -8/2 = -4// We end up with the average of the residuals in the leaf R2,1 and R4,1. Hence if we get any leaf with more than 1 residual, we can simply find the average of that leaf and that will be our final output.

现在计算所有叶子的输出后,我们得到,

3.2.5 步骤 5 —

这最终是我们必须更新先前模型的预测的最后一步。它可以更新为:

---------------------------
Fm(x) = Fm-1(x) + vmhm(x)
---------------------------
m       = number of decision trees made
Fm-1(x) = prediction of the base model (previous prediction) 
Hm(x)   = recent DT made on the residuals// since F1-1= 0 , F0 is our base model hence the previous prediction is 71.
vm is the learning rate that is usually selected between 0-1. It reduces the effect each tree has on the final prediction, and this improves accuracy in the long run. Let’s take vm=0.1 in this example.Let’s calculate the new prediction now:New Prediction F1(x) = 71 + 0.1 * Height(> 1.5)/            \/              \/                \Fav Clr               Gender/ \                    / \/   \                  /   \/     \                /     \R1,1     R2,1           R3,1    R4,117        5, 2           -15    6, -14

        假设我们想要找到高度为 1.7 的第一个数据点的预测。这个数据点将经过这个决策树,它得到的输出将乘以学习率,然后添加到之前的预测中。

        现在,更新预测后,我们需要再次迭代步骤 2 中的步骤以找到另一个决策树。这种情况将会发生,直到我们通过基于残差顺序创建决策树来减少残差。

        现在假设m=2,这意味着我们已经构建了 2 个决策树,现在我们想要有新的预测。

        这次我们将把之前的预测F1(x)添加到对残差进行的新 DT 中。我们将一次又一次地迭代这些步骤,直到损失可以忽略不计。

New Prediction F2(x) = 71 + (0.1 * DT value) + (0.1 * DT value)

        这就是梯度提升算法的全部内容。我希望您对这个主题有更好的理解。我们下一篇文章讨论XgBoost算法。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/240873.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

linux buffer的回写的触发链路

mark_buffer_dirty中除了会标记dirty到buffer_head->state、page.flag、folio->mapping->i_pages外,还会调用inode所在文件系统的dirty方法(inode->i_sb->s_op->dirty_inode)。然后为inode创建一个它所在memory group的wri…

(十七)Flask之大型项目目录结构示例【二扣蓝图】

大型项目目录结构: 问题引入: 在上篇文章讲蓝图的时候我给了一个demo项目,其中templates和static都各自只有一个,这就意味着所有app的模板和静态文件都放在了一起,如果项目比较大的话,这就非常乱&#xf…

阿里云吴结生:云计算是企业实现数智化的阶梯

云布道师 近年来,越来越多人意识到,我们正处在一个数据爆炸式增长的时代。IDC 预测 2027 年全球产生的数据量将达到 291 ZB,与 2022 年相比,增长了近 2 倍。其中 75% 的数据来自企业,每一个现代化的企业都是一家数据公…

大创项目推荐 深度学习+python+opencv实现动物识别 - 图像识别

文章目录 0 前言1 课题背景2 实现效果3 卷积神经网络3.1卷积层3.2 池化层3.3 激活函数:3.4 全连接层3.5 使用tensorflow中keras模块实现卷积神经网络 4 inception_v3网络5 最后 0 前言 🔥 优质竞赛项目系列,今天要分享的是 🚩 *…

Excel 获取当前行的行数

ROW() 获取当前行 ROW()1 获取当前行然后支持二次开发

【H3C】交换机VLAN配置

交换机配置 ACCESS配置方式 u t m //关闭提示 sys //进入系统视图 vlan 10 to 11 //批量创建vlan10到11 int g1/0/1 //进接口 port link-type access //配置接口类型access,t…

Linux--Shell脚本应用实战

实验环境 随着业务的不断发展,某公司所使用的Linux服务器也越来越多。在系统管理和维护过程中,经 常需要编写一些实用的小脚本,以辅助运维工作,提高工作效率。 需求描述 > 编写一个名为getarp.sh的小脚本,记录局域…

大数运算·字符串相加·阶乘

大数,就是C/C中利用基本类型所不能存储的数字,少则数十位,大则几万位,如何存储和计算大数就是本文的内容。 在C和C中,没有存储大数的数据结构,就算 unsigned long long也只能表示19位的数字  如果我们用d…

PHP案例代码:PHP如何提供下载功能?

对Web开发人员来说,“下载”功能是一个非常常见的需求。在网站中提供文件下载,通常用于提供用户手册、软件升级、音乐、视频等各种资源文件。本教程将向您介绍如何实现一个PHP下载功能,同时告诉浏览器文件名称、文件大小、文件类型,并统计下载次数。 首先,我们需要了解一些…

免费PHP完美运营的最新短视频打赏系统学习版

免费PHP完美运营的最新短视频打赏系统学习版 一、介绍 免费PHP完美运营的最新短视频打赏系统学习版,是一款基于PHP开发的打赏系统,具有强大的功能和稳定的性能。相比于市面上的其他打赏系统,它更加完善,几乎无bug,能…

openGauss学习笔记-171 openGauss 数据库运维-备份与恢复-导入数据-深层复制

文章目录 openGauss学习笔记-171 openGauss 数据库运维-备份与恢复-导入数据-深层复制171.1 使用CREATE TABLE执行深层复制171.1.1 操作步骤 171.2 使用CREATE TABLE LIKE执行深层复制171.2.1 操作步骤 171.3 通过创建临时表并截断原始表来执行深层复制171.3.1 操作步骤 openGa…

MATLAB ga函数的使用方法

一、ga句法结构 x ga(fitnessfcn,nvars) x ga(fitnessfcn,nvars,A,b) x ga(fitnessfcn,nvars,A,b,Aeq,beq) x ga(fitnessfcn,nvars,A,b,Aeq,beg,IB,UB) x ga(fitnessfcn,nvars,A,b,Aeq,beq,LB,UB,nonlcon) x ga(fitnessfcn,nvars,A,b,Aeq,beq,LB,UB,nonlcon,options) x …

vue的表单收集案例

Vue的表单收集案例 这只是最基础的表单收集&#xff0c;并未涉及到element-ui。 <!DOCTYPE html> <html><head><meta charset"UTF-8" /><title>收集表单数据</title><script type"text/javascript" src"../js…

LabVIEW的六轴工业机器人运动控制系统

LabVIEW开发六轴工业机器人运动控制系统 本项目开发了一个高效的工业机器人控制系统&#xff0c;重点关注于运动学算法和轨迹规划算法的实现和测试。LabVIEW作为一个关键技术&#xff0c;在项目中扮演了核心角色。 系统研究与算法开发&#xff1a;首先&#xff0c;项目围绕机…

大IP时代文旅品牌如何用数字人玩转数字营销?

在大IP时代&#xff0c;有IP意味着话题、人气、流量以及变现能力&#xff0c;文旅品牌如何打造一个成功的、受欢迎的IP&#xff0c;拓宽文旅资源价值&#xff0c;成为文旅品牌营销的一大痛点。随着元宇宙概念兴起&#xff0c;数字人IP可以满足文旅品牌多元化需求&#xff0c;文…

React学习计划-React16--React基础(二)组件与组件的3大核心属性state、props、ref和事件处理

1. 组件 函数式组件&#xff08;适用于【简单组件】的定义&#xff09; 示例&#xff1a; 执行了ReactDOM.render(<MyComponent/>, ...)之后执行了什么&#xff1f; React解析组件标签&#xff0c;找到了MyComponent组件发现组件是使用函数定义的&#xff0c;随后调用该…

ARM 点灯

.text .global _start _start: led1设置GPIOE时钟使能 RCC_MP_AHB4ENSETR[4]->1 0X50000A28LDR R0,0X50000A28 指定寄存器地址LDR R1,[R0] 将寄存器数值取出来放在R1中ORR R1,R1,#(0x1<<4) 将第4位设置为1STR R1,[R0] 将修改后的值写回去设置PE10为输出 GPIOE…

Python 爬虫之下载视频(三)

批量下载某B主视频 文章目录 批量下载某B主视频前言一、基本思路二、确定遍历循环结构三、基本思路中第12步三、基本思路中第345步总结 前言 上一篇讲了如何去获取标题和视频链接。这篇就跟大家讲一下如何去下载这些视频。本篇会以标题和 视频链接 为突破口&#xff0c;来寻找…

GrayLog日志平台的基本使用-docker容器日志接入

1、/etc/docker/daemon.json中加入如下配置并重启服务 [rootlocalhost src]# cat /etc/docker/daemon.json { "registry-mirrors": ["https://dhq9bx4f.mirror.aliyuncs.com"], "log-driver": "gelf", "log-opts":…

在Jetpack Compose中使用ExoPlayer实现直播流和音频均衡器

在Jetpack Compose中使用ExoPlayer实现直播流和音频均衡器 背景 ExoPlayer与Media3的能力结合&#xff0c;为Android应用程序播放多媒体内容提供了强大的解决方案。在本教程中&#xff0c;我们将介绍如何设置带有Media3的ExoPlayer来支持使用M3U8 URL进行直播流。此外&#x…