c++基本数据结构

void insert(const node *head, node *p)
{node *x, *y;y=head;do{x=y;y=x->next;} while ((y!=NULL) && (y->value < p->value);x->next=p;p->next=y;
}

二.栈

 (1) 栈的实现!

操作规则:先进后出,先出后进。

int stack[N], top=0; // top表示栈顶位置。

入栈:inline void push(int a) { stack[top++]=a; }

出栈:inline int pop() { return stack[--top];

栈空的条件:inline bool empty() { return top<0; }  

  如果两个栈有相反的需求,可以用这种方法节省空间:用一个数组表示两个栈。分别用top1、top2表示栈顶的位置,令top1从0开始,top2从N-1开始。

(2) DFS和栈

  递归其实也用到了栈。每调用一次函数,都相当于入栈(当然这步操作“隐藏在幕后”)。函数调用完成,相当于出栈。

  一般情况下,调用栈的空间大小为16MB。也就是说,如果递归次数太多,很容易因为栈溢出导致程序崩溃,即“爆栈”。

  为了防止“爆栈”,可以将递归用栈显式实现。如果可行,也可以改成迭代、递推等方法。

  使用栈模拟递归时,注意入栈的顺序——逆序入栈,后递归的要先入栈,先递归的要后入栈。

  下面是非递归版本的DFS模板:

stack <int> s;                                // 存储状态
void DFS(int v, …)
{s.push(v);                                // 初始状态入栈while (!s.empty()){int x = s.top(); s.pop();        // 获取状态// 处理结点if (x达到某种条件){// 输出、解的数量加1、更新目前搜索到的最优值等…return;}// 寻找下一状态。当然,不是所有的搜索都要这样寻找状态。// 注意,这里寻找状态的顺序要与递归版本的顺序相反,即逆序入栈。for (i=n-1;i>=0;i--){s.push(… /*i对应的状态*/);}}// 无解cout<<"No Solution.";
}


三.队列

(1) 顺序队列

操作规则:先进先出,后进后出。

定义:int queue[N], front=0, rear=0;

front指向队列首个元素,rear指向队列尾部元素的右侧。

入队:inline void push(int a) { queue[rear++]=a; }

出队:inline int pop() { return queue[front++]; }

队空的条件:inline bool empty() { return front==rear; }

(2) 循环队列

循环队列——把链状的队列变成了一个环状队列。与上面的链状队列相比,可以节省很大空间。

定义:int queue[N], front=0, rear=0;
front指向队列首个元素,rear指向队列尾部元素的右侧。

入队:inline void push(int a) { queue[rear]=a; rear=(rear+1)%N; }

出队:inline int pop() { int t=queue[front]; front=(front+1)%N; return t; }

队满或队空的条件:inline bool empty() { return front==rear; }
队满和队空都符合上述条件。怎么把它们区分开呢?
第一种方法:令队列的大小是N+1,然后只使用N个元素。这样队满和队空的条件就不一样了。
第二种方法:在入队和出队同时记录队列元素个数。这样,直接检查元素个数就能知道队列是空还是满。

(3) BFS和队列

BFS要借助队列来完成,并且,将队列改成堆栈,BFS就变成了DFS。BFS的具体实现见42页“3.7 代码模板”。


四.二叉树

(1) 二叉树的链表存储法

struct node
{int value;node *leftchild, *rightchild;//int id;                // 结点编号。//node *parent;        // 指向父亲结点。
} arr[N];
int top=-1;
node * head = NULL;
#define NEW(p)  p=&arr[++top]; p->leftchild=NULL;        \p->rightchild=NULL; p->value=0

(2) 完全二叉树的一维数组存储法

  如果一个二叉树的结点严格按照从上到下、从左到右的顺序填充,就可以用一个一维数组保存。

下面假设这个树有n个结点,待操作的结点是r(0≤rn)。

操作

宏定义

r的取值范围

r的父亲

#define parent(r)          (((r)-1)/2)

r≠0

r的左儿子

#define leftchild(r)       ((r)*2+1)

2r+1<n

r的右儿子

#define rightchild(r)      ((r)*2+2)

2r+2<n

r的左兄弟

#define leftsibling(r)     ((r)-1)

r为偶数且0<rn-1

r的右兄弟

#define rightsibling(r)    ((r)+1)

r为奇数且r+1<n

判断r是否为叶子

#define isleaf(r)          ((r)>=n/2)

rn

(3) 二叉树的遍历

1. 前序遍历

void preorder(node *p)
{if (p==NULL) return;// 处理结点pcout<<p->value<<' ';preorder(p->leftchild);preorder(p->rightchild);
}

2. 中序遍历

void inorder(node *p)
{if (p==NULL) return;inorder(p->leftchild);// 处理结点pcout<<p->value<<' ';inorder(p->rightchild);
}

3. 后序遍历

void postorder(node *p)
{if (p==NULL) return;postorder(p->leftchild);postorder(p->rightchild);// 处理结点pcout<<p->value<<' ';
}

假如二叉树是通过动态内存分配建立起来的,在释放内存空间时应该使用后序遍历。

4. 宽度优先遍历(BFS)

首先访问根结点,然后逐个访问第一层的结点,接下来逐个访问第二层的结点……

node *q[N];
void BFS(node *p)
{if (p==NULL) return;int front=1,rear=2;q[1]=p;while (front<rear){node *t = q[front++];// 处理结点tcout<<t->value<<' ';if (t->leftchild!=NULL) q[rear++]=t->leftchild;if (t->rightchild!=NULL) q[rear++]=t->rightchild;}
}

对于完全二叉树,可以直接遍历:

for (int i=0; i<n; i++) cout<<a[i]<<' ';

(4) 二叉树重建

【问题描述】二叉树的遍历方式有三种:前序遍历、中序遍历和后序遍历。现在给出其中两种遍历的结果,请输出第三种遍历的结果。

【分析】

前序遍历的第一个元素是根,后序遍历的最后一个元素也是根。所以处理时需要到中序遍历中找根,然后递归求出树。

注意!输出之前须保证字符串的最后一个字符是'\0'。

1. 中序+后序→前序

void preorder(int n, char *pre, char *in, char *post)
{if (n<=0) return;int p=strchr(in, post[n-1])-in;pre[0]=post[n-1];preorder(p, pre+1, in, post);preorder(n-p-1, pre+p+1, in+p+1, post+p);
}

2. 前序中序后序

void postorder(int n, char *pre, char *in, char *post)
{if (n<=0) return;int p=strchr(in, pre[0])-in;postorder(p, pre+1, in, post);postorder(n-p-1, pre+p+1, in+p+1, post+p);post[n-1]=pre[0];
}

3. 前序+后序→中序

“中+前”和“中+后”都能产生唯一解,但是“前+后”有多组解。下面输出其中一种。

bool check(int n, char *pre, char *post)        // 判断pre、post是否属于同一棵二叉树
{bool b;for (int i=0; i<n; i++){b=false;for (int j=0; j<n; j++)if (pre[i]==post[j]){b=true;break;}if (!b) return false;}return true;
}void inorder(int n, char *pre, char *in, char *post)
{if (n<=0) return;int p=1;while (check(p, pre+1, post)==false && p<n)p++;if (p>=n) p=n-1;                // 此时,如果再往inorder里传p,pre已经不含有效字符了。inorder(p, pre+1, in, post);in[p]=pre[0];inorder(n-p-1, pre+p+1, in+p+1, post+p);
}

(5) 求二叉树的直径*

从任意一点出发,搜索距离它最远的点,则这个最远点必定在树的直径上。再搜索这个最远点的最远点,这两个最远点的距离即为二叉树的直径。

求树、图(连通图)的直径的思想是相同的。

// 结点编号从1开始,共n个结点。
struct node
{int v;node *parent, *leftchild, *rightchild;
} a[1001], *p;
int maxd;
bool T[1003];
#define t(x) T[((x)==NULL)?0:((x)-a+1)]
node *p;
void DFS(node * x, int l)
{if (l>maxd) maxd=l, p=x;if (x==NULL) return;t(x)=false;if (t(x->parent)) DFS(x->parent, l+1);if (t(x->leftchild)) DFS(x->leftchild, l+1);if (t(x->rightchild)) DFS(x->rightchild, l+1);
}int distance(node *tree)            // tree已经事先读好
{maxd=0;memset(T, 0, sizeof(T));for (int i=1; i<=n; i++)T[i]=true;DFS(tree,0);maxd=0;memset(T, 0, sizeof(T));for (int i=1; i<=n; i++) T[i]=true;DFS(p,0);return maxd;
}


五.并查集

并查集最擅长做的事情——将两个元素合并到同一集合、判断两个元素是否在同一集合中。

并查集用到了树的父结点表示法。在并查集中,每个元素都保存自己的父亲结点的编号,如果自己就是根结点,那么父亲结点就是自己。这样就可以用树形结构把在同一集合的点连接到一起了。

并查集的实现:

struct node
{int parent;                        // 表示父亲结点。当编号i==parent时为根结点。int count;                            // 当且仅当为根结点时有意义:表示自己及子树元素的个数int value;                            // 结点的值
} set[N];int Find(int x)                            // 查找算法的递归版本(建议不用这个)
{return (set[x].parent==x) ? x : (set[x].parent = Find(set[x].parent));
}int Find(int x)                             // 查找算法的非递归版本
{int y=x;while (set[y].parent != y)            // 寻找父亲结点y = set[y].parent;while (x!=y)                            // 路径压缩,即把途中经过的结点的父亲全部改成y。{int temp = set[x].parent;set[x].parent = y;x = temp;}return y;
}void Union(int x, int y)                // 小写的union是关键字。
{x=Find(x); y=Find(y);                // 寻找各自的根结点if (x==y) return;                    // 如果不在同一个集合,合并if (set[x].count > set[y].count)    // 启发式合并,使树的高度尽量小一些{set[y].parent = x;set[x].count += set[y].count;}else{set[x].parent = y;set[y].count += set[x].count;}
}void Init(int cnt)                        // 初始化并查集,cnt是元素个数
{for (int i=1; i<=cnt; i++){set[i].parent=i;set[i].count=1;set[i].value=0;}
}void compress(int cnt)                    // 合并结束,再进行一次路径压缩
{for (int i=1; i<=cnt; i++) Find(i);
}

说明

使用之前调用Init()!

Union(x,y):把xy进行启发式合并,即让节点数比较多的那棵树作为“树根”,以降低层次。

Find(x):寻找x所在树的根结点。Find的时候,顺便进行了路径压缩。
上面的Find有两个版本,一个是递归的,另一个是非递归的。

判断xy是否在同一集合:if (Find(x)==Find(y)) ……

在所有的合并操作结束后,应该执行compress()。

并查集的效率很高,执行m次查找的时间约为O(5m)。


六.总结

数据结构是计算机科学的重要分支。选择合适的数据结构,可以简化问题,减少时间的浪费。

1. 线性表

线性表有两种存储方式,一种是顺序存储,另一种是链式存储。前者只需用一维数组实现,而后者既可以用数组实现,又可以用指针实现。

顺序表的特点是占用空间较小,查找和定位的速度很快,但是插入和删除元素的速度很慢(在尾部速度快);链表和顺序表正好相反,它的元素插入和删除速度很快,但是查找和定位的速度很慢(同样,在首尾速度快)。

2. 栈和队列

栈和队列以线性表为基础。它们的共同点是添加、删除元素都有固定顺序,不同点是删除元素的顺序。队列从表头删除元素,而栈从表尾删除元素,所以说队列是先进先出表,堆栈是先进后出表。

栈和队列在搜索中有非常重要的应用。栈可以用来模拟深度优先搜索,而广度优先搜索必须用队列实现。

有时为了节省空间,栈的两头都会被利用,而队列会被改造成循环队列。

3. 二叉树

上面几种数据结构都是线性结构。而二叉树是一种很有用的非线性结构。二叉树可以采用以下的递归定义:二叉树要么为空,要么由根结点、左子树和右子树组成。左子树和右子树分别是一棵二叉树。

计算机中的树和现实生活不同——计算机里的树是倒置的,根在上,叶子在下。

完全二叉树:一个完全二叉树的结点是从上到下、从左到右地填充的。如果高度为h,那么0~h-1层一定已经填满,而第h层一定是从左到右连续填充的。

通常情况下,二叉树用指针实现。对于完全二叉树,可以用一维数组实现(事先从0开始编号)。

访问二叉树的所有结点的过程叫做二叉树的遍历。常用的遍历方式有前序遍历、中序遍历、后序遍历,它们都是递归完成的。

4. 

树也可以采用递归定义:树要么为空,要么由根结点和nn≥0)棵子树组成。

森林由mm≥0)棵树组成。

二叉树不是树的一种,因为二叉树的子树中有严格的左右之分,而树没有。这样,树可以用父结点表示法来表示(当然,森林也可以)。并查集的合并、查询速度很快,它就是用父结点表示法实现的。

不过父结点表示法的遍历比较困难,所以常用“左儿子右兄弟”表示法把树转化成二叉树。

树的遍历和二叉树的遍历类似,不过不用中序遍历。它们都是递归结构,所以可以在上面实施动态规划。

树作为一种特殊的图,在图论中也有广泛应用。

树的表示方法有很多种。

第一种是父节点表示法,它适合并查算法,但不便遍历。

第二种是子节点表表示法。

第三种是“左儿子右兄弟”表示法。

 

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/24073.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

人工智能学习07--pytorch23--目标检测:Deformable-DETR训练自己的数据集

参考 https://blog.csdn.net/qq_44808827/article/details/125326909https://blog.csdn.net/dystsp/article/details/125949720?utm_mediumdistribute.pc_relevant.none-task-blog-2~default~baidujs_baidulandingword~default-0-125949720-blog-125326909.235^v38^pc_releva…

JavaEE 面试常见问题

一、常见的 ORM 框架有哪些&#xff1f; 1.Mybatis Mybatis 是一种典型的半自动的 ORM 框架&#xff0c;所谓的半自动&#xff0c;是因为还需要手动的写 SQL 语句&#xff0c;再由框架根据 SQL 及 传入数据来组装为要执行的 SQL 。其优点为&#xff1a; 1. 因为由程序员…

【转】金融行业JR/T0197-2020《金融数据安全 数据安全分级指南》解读

原文链接&#xff1a;金融行业JR/T0197-2020《金融数据安全 数据安全分级指南》解读 《金融数据安全 数据安全分级指南》 解 读 随着IT技术的发展&#xff0c;银行的基础业务、核心流程等众多事务和活动都运营在信息化基础之上&#xff0c;金融机构运行过程中产生了大量的数字…

词嵌入、情感分类任务

目录 1.词嵌入&#xff08;word embedding&#xff09; 对单词使用one-hot编码的缺点是难以看出词与词之间的关系。 所以需要使用更加特征化的表示&#xff08;featurized representation&#xff09;&#xff0c;如下图所示&#xff0c;我们可以得到每个词的向量表达。 假设…

IO(JavaEE初阶系列8)

目录 前言&#xff1a; 1.文件 1.1认识文件 1.2结构和目录 1.3文件路径 1.4文本文件vs二进制文件 2.文件系统的操作 2.1Java中操作文件 2.2File概述 2.2.1构造File对象 2.2.2File中的一些方法 3.文件内容的操作 3.1字节流 3.1.1InPutStream的使用方法 3.1.2OutPu…

windows下安装anaconda、pycharm、cuda、cudnn、PyTorch-GPU版本

目录 一、anaconda安装及虚拟环境创建 1.anaconda的下载 2.Anaconda的安装 3.创建虚拟环境 3.1 环境启动 3.2 切换镜像源 3.3环境创建 3.4 激活环境 3.5删除环境 二、pycharm安装 1.pycharm下载 2.pycharm的安装 三、CUDA的安装 1.GPU版本和CUDA版本、cudnn版本、显卡…

一起学算法(二维数组篇)

1.概念定义 1.矩阵的定义 矩阵A(nm)的定义时按照长方形排列的复数或实数集合&#xff0c;其中n代表的是行数&#xff0c;m代表的是列数。如下所示&#xff0c;代表的是一个4x3的矩阵 在Java中&#xff0c;我们可以用A[n][m]来代表一个n*m的矩阵&#xff0c;其中A[i][j]代表的是…

python:基于Kalman滤波器的移动物体位置估计

CSDN@_养乐多_ Kalman滤波器是一种经典的估计方法,广泛应用于估计系统状态的问题。本篇博客将介绍Kalman滤波器的基本原理,并通过一个简单的Python代码示例,演示如何使用Kalman滤波器来估计移动物体的位置。 通过运行代码,我们将得到一个包含两个子图的图像,分别展示了估…

第二十二篇:思路拓展:如何打造高性能的 React 应用?

React 应用也是前端应用&#xff0c;如果之前你知道一些前端项目普适的性能优化手段&#xff0c;比如资源加载过程中的优化、减少重绘与回流、服务端渲染、启用 CDN 等&#xff0c;那么这些手段对于 React 来说也是同样奏效的。 不过对于 React 项目来说&#xff0c;它有一个区…

Ubuntu 23.04 作为系统盘的体验和使用感受

1.为啥主系统装了Ubuntu 由于公司发电脑了&#xff0c;我自己也有一台台式电脑&#xff0c;然后也想去折腾一下Ubuntu&#xff0c;就把自己的笔记本装成Ubuntu系统了&#xff0c; 我使用的是23.04的桌面版&#xff0c;带图形化界面的。我准备换回Windows 11了&#xff08;因为…

策略模式(Strategy)

策略模式是一种行为设计模式&#xff0c;就是定义一系列算法&#xff0c;然后将每一个算法封装起来&#xff0c;并使它们可相互替换。本模式通过定义一组可相互替换的算法&#xff0c;实现将算法独立于使用它的用户而变化。 Strategy is a behavioral design pattern that def…

Redis 如何解决缓存雪崩、缓存击穿、缓存穿透难题

前言 Redis 作为一门热门的缓存技术&#xff0c;引入了缓存层&#xff0c;就会有缓存异常的三个问题&#xff0c;分别是缓存击穿、缓存穿透、缓存雪崩。我们用本篇文章来讲解下如何解决&#xff01; 缓存击穿 缓存击穿: 指的是缓存中的某个热点数据过期了&#xff0c;但是此…

React Native获取手机屏幕宽高(Dimensions)

import { Dimensions } from react-nativeconsole.log(Dimensions, Dimensions.get(window)) 参考链接&#xff1a; https://www.reactnative.cn/docs/next/dimensions#%E6%96%B9%E6%B3%95 https://chat.xutongbao.top/

Python3 处理PDF之PyMuPDF 入门

PyMuPDF 简介 PyMuPDF是一个用于处理PDF文件的Python库&#xff0c;它提供了丰富的功能来操作、分析和转换PDF文档。这个库的设计目标是提供一个简单易用的API,使得开发者能够轻松地在Python程序中实现PDF文件的各种操作。 PyMuPDF的主要特点如下&#xff1a; 跨平台兼容性&a…

C++20 协程(coroutine)入门

文章目录 C20 协程&#xff08;coroutine&#xff09;入门什么是协程无栈协程和有栈协程有栈协程的例子例 1例 2 对称协程与非对称协程无栈协程的模型无栈协程的调度器朴素的单线程调度器让协程学会等待Python 中的异步函数可等待对象M:N 调度器——C# 中的异步函数 小结 C20 中…

替换开源LDAP,西井科技用宁盾目录统一身份,为业务敏捷提供支撑

客户介绍 上海西井科技股份有限公司成立于2015年&#xff0c;是一家深耕于大物流领域的人工智能公司&#xff0c;旗下无人驾驶卡车品牌Q-Truck开创了全球全时无人驾驶新能源商用车的先河&#xff0c;迄今为止已为全球16个国家和地区&#xff0c;120余家客户打造智能化升级体验…

SNAT和DNAT原理与应用

iptables的备份和还原 1.写在命令行当中的都是临时配置。 2.把我们的规则配置在 备份&#xff08;导出&#xff09;&#xff1a;iptables-save > /opt/iptables.bak 默认配置文件&#xff1a;/etc/sysconfig/iptables 永久配置&#xff1a;cat /opt/iptables.bak > /etc…

并查集练习—省份数量

上一篇中讲了并查集及其原理&#xff0c;在这篇文章中简单应用一下。如果对并查集不是很了解强烈建议先看上一篇。 题目&#xff1a; 有 n 个城市&#xff0c;其中一些彼此相连&#xff0c;另一些没有相连。如果城市 a 与城市 b 直接相连&#xff0c;且城市 b 与城市 c 直接相…

DP-GAN损失

在前面我们看了生成器和判别器的组成。 生成器损失公式&#xff1a; 首先将fake image 和真实的 image输入到判别器中&#xff1a; 接着看第一个损失&#xff1a;参数分别为fake image经过判别器的输出mask&#xff0c;和真实的label进行损失计算。对应于&#xff1a; 其中l…

捕捉时刻:将PDF文件中的图像提取为个性化的瑰宝(从pdf提取图像)

应用场景&#xff1a; 该功能的用途是从PDF文件中提取图像。这在以下情况下可能会很有用&#xff1a; 图片提取和转换&#xff1a;可能需要将PDF文件中的图像提取出来&#xff0c;并保存为单独的图像文件&#xff0c;以便在其他应用程序中使用或进行进一步处理。例如&#xff…