人工智能学习07--pytorch23--目标检测:Deformable-DETR训练自己的数据集

参考

https://blog.csdn.net/qq_44808827/article/details/125326909https://blog.csdn.net/dystsp/article/details/125949720?utm_medium=distribute.pc_relevant.none-task-blog-2~default~baidujs_baidulandingword~default-0-125949720-blog-125326909.235^v38^pc_relevant_sort_base2&spm=1001.2101.3001.4242.1&utm_relevant_index=3https://blog.csdn.net/m0_49752107/article/details/129887028https://www.jianshu.com/p/b364534fd0a7https://blog.csdn.net/u010826850/article/details/117325848https://pytorch.org/get-started/previous-versions/

环境准备

1、pytorch
conda create -n deformable_detr python=3.9 pip

2、激活环境
conda activate deformable_detr

3、torch

# CUDA 11.6
pip install torch==1.12.1+cu116 torchvision==0.13.1+cu116 torchaudio==0.12.1 --extra-index-url https://download.pytorch.org/whl/cu116
# CUDA 11.3
pip install torch==1.12.1+cu113 torchvision==0.13.1+cu113 torchaudio==0.12.1 --extra-index-url https://download.pytorch.org/whl/cu113

4、其他的库
pip install -r requirements.txt

5、编译CUDA
cd ./models/ops
sh ./make.sh
#unit test (should see all checking is True)
python test.py (我没运行这一步)
在这里插入图片描述
主要是MultiScaleDeformableAttention包,如果中途换了torch版本,需要重新编译cuda,得到一个新的这个包,不然报错。

准备数据集

1、把自己的数据集放在coco文件夹里面

在这里插入图片描述

或者改改这里:
在这里插入图片描述

2、在main.py文件里面改分类数

在这里插入图片描述
deformable-detr 也是需要一个背景类,num_class+1
在这里插入图片描述

3、pth预训练文件

r50上coco数据集训练结果文件
要翻墙,或者:
下载链接:https://download.csdn.net/download/u010826850/21980492
好人一生平安

4、根据自己的数据集修改pth

新建一个文件:
在这里插入图片描述

5、main.py

在这里插入图片描述
改成这样:
在这里插入图片描述

7、修改参数

在这里插入图片描述

8、问题解决

参考其他博主博文里的
在这里插入图片描述

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/24072.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

JavaEE 面试常见问题

一、常见的 ORM 框架有哪些? 1.Mybatis Mybatis 是一种典型的半自动的 ORM 框架,所谓的半自动,是因为还需要手动的写 SQL 语句,再由框架根据 SQL 及 传入数据来组装为要执行的 SQL 。其优点为: 1. 因为由程序员…

【转】金融行业JR/T0197-2020《金融数据安全 数据安全分级指南》解读

原文链接:金融行业JR/T0197-2020《金融数据安全 数据安全分级指南》解读 《金融数据安全 数据安全分级指南》 解 读 随着IT技术的发展,银行的基础业务、核心流程等众多事务和活动都运营在信息化基础之上,金融机构运行过程中产生了大量的数字…

词嵌入、情感分类任务

目录 1.词嵌入(word embedding) 对单词使用one-hot编码的缺点是难以看出词与词之间的关系。 所以需要使用更加特征化的表示(featurized representation),如下图所示,我们可以得到每个词的向量表达。 假设…

738. 单调递增的数字

738. 单调递增的数字 当且仅当每个相邻位数上的数字 x 和 y 满足 x < y 时&#xff0c;我们称这个整数是单调递增的。 给定一个整数 n &#xff0c;返回 小于或等于 n 的最大数字&#xff0c;且数字呈 单调递增 。 示例 1: 输入: n 10 输出: 9示例 2: 输入: n 1234 输出…

IO(JavaEE初阶系列8)

目录 前言&#xff1a; 1.文件 1.1认识文件 1.2结构和目录 1.3文件路径 1.4文本文件vs二进制文件 2.文件系统的操作 2.1Java中操作文件 2.2File概述 2.2.1构造File对象 2.2.2File中的一些方法 3.文件内容的操作 3.1字节流 3.1.1InPutStream的使用方法 3.1.2OutPu…

windows下安装anaconda、pycharm、cuda、cudnn、PyTorch-GPU版本

目录 一、anaconda安装及虚拟环境创建 1.anaconda的下载 2.Anaconda的安装 3.创建虚拟环境 3.1 环境启动 3.2 切换镜像源 3.3环境创建 3.4 激活环境 3.5删除环境 二、pycharm安装 1.pycharm下载 2.pycharm的安装 三、CUDA的安装 1.GPU版本和CUDA版本、cudnn版本、显卡…

一起学算法(二维数组篇)

1.概念定义 1.矩阵的定义 矩阵A(nm)的定义时按照长方形排列的复数或实数集合&#xff0c;其中n代表的是行数&#xff0c;m代表的是列数。如下所示&#xff0c;代表的是一个4x3的矩阵 在Java中&#xff0c;我们可以用A[n][m]来代表一个n*m的矩阵&#xff0c;其中A[i][j]代表的是…

Linux systemd管理常用的几个小案例

systemd是目前Linux系统上主要的系统守护进程管理工具&#xff0c;配置文件要以.service结尾且放到 /usr/lib/systemd/system/目录下面 1、systemd管理ElasticSearch [Unit] DescriptionElasticsearch Service[Service] Typeforking Userelastic Groupelastic ExecStart/home…

Unity小游戏——迷你拼图

游戏展示 拼图演示 资源&#xff1a; 链接&#xff1a;https://pan.baidu.com/s/1BGeSmRCO_WZRUyl3MxefGw 提取码&#xff1a;0n4a 一、玩法介绍 排列拼图碎片&#xff0c;拼出最后的图案。可以点住碎片的任意位置拖动&#xff1b;点击"重来"按钮&#xff0c;可以…

python:基于Kalman滤波器的移动物体位置估计

CSDN@_养乐多_ Kalman滤波器是一种经典的估计方法,广泛应用于估计系统状态的问题。本篇博客将介绍Kalman滤波器的基本原理,并通过一个简单的Python代码示例,演示如何使用Kalman滤波器来估计移动物体的位置。 通过运行代码,我们将得到一个包含两个子图的图像,分别展示了估…

第二十二篇:思路拓展:如何打造高性能的 React 应用?

React 应用也是前端应用&#xff0c;如果之前你知道一些前端项目普适的性能优化手段&#xff0c;比如资源加载过程中的优化、减少重绘与回流、服务端渲染、启用 CDN 等&#xff0c;那么这些手段对于 React 来说也是同样奏效的。 不过对于 React 项目来说&#xff0c;它有一个区…

Ubuntu 23.04 作为系统盘的体验和使用感受

1.为啥主系统装了Ubuntu 由于公司发电脑了&#xff0c;我自己也有一台台式电脑&#xff0c;然后也想去折腾一下Ubuntu&#xff0c;就把自己的笔记本装成Ubuntu系统了&#xff0c; 我使用的是23.04的桌面版&#xff0c;带图形化界面的。我准备换回Windows 11了&#xff08;因为…

策略模式(Strategy)

策略模式是一种行为设计模式&#xff0c;就是定义一系列算法&#xff0c;然后将每一个算法封装起来&#xff0c;并使它们可相互替换。本模式通过定义一组可相互替换的算法&#xff0c;实现将算法独立于使用它的用户而变化。 Strategy is a behavioral design pattern that def…

Redis 如何解决缓存雪崩、缓存击穿、缓存穿透难题

前言 Redis 作为一门热门的缓存技术&#xff0c;引入了缓存层&#xff0c;就会有缓存异常的三个问题&#xff0c;分别是缓存击穿、缓存穿透、缓存雪崩。我们用本篇文章来讲解下如何解决&#xff01; 缓存击穿 缓存击穿: 指的是缓存中的某个热点数据过期了&#xff0c;但是此…

React Native获取手机屏幕宽高(Dimensions)

import { Dimensions } from react-nativeconsole.log(Dimensions, Dimensions.get(window)) 参考链接&#xff1a; https://www.reactnative.cn/docs/next/dimensions#%E6%96%B9%E6%B3%95 https://chat.xutongbao.top/

Python3 处理PDF之PyMuPDF 入门

PyMuPDF 简介 PyMuPDF是一个用于处理PDF文件的Python库&#xff0c;它提供了丰富的功能来操作、分析和转换PDF文档。这个库的设计目标是提供一个简单易用的API,使得开发者能够轻松地在Python程序中实现PDF文件的各种操作。 PyMuPDF的主要特点如下&#xff1a; 跨平台兼容性&a…

C++20 协程(coroutine)入门

文章目录 C20 协程&#xff08;coroutine&#xff09;入门什么是协程无栈协程和有栈协程有栈协程的例子例 1例 2 对称协程与非对称协程无栈协程的模型无栈协程的调度器朴素的单线程调度器让协程学会等待Python 中的异步函数可等待对象M:N 调度器——C# 中的异步函数 小结 C20 中…

替换开源LDAP,西井科技用宁盾目录统一身份,为业务敏捷提供支撑

客户介绍 上海西井科技股份有限公司成立于2015年&#xff0c;是一家深耕于大物流领域的人工智能公司&#xff0c;旗下无人驾驶卡车品牌Q-Truck开创了全球全时无人驾驶新能源商用车的先河&#xff0c;迄今为止已为全球16个国家和地区&#xff0c;120余家客户打造智能化升级体验…

JAVA工程师程序员常见的面试题业务场景包含答案【基础,经典,少见,热频,技巧】

本人详解 作者:王文峰,参加过 CSDN 2020年度博客之星,《Java王大师王天师》采购供应链共享平台人员,财务规则对账人员,物流门禁计量系统对接人员,ERP事业部人员 公众号:山峯草堂,非技术多篇文章,专注于天道酬勤的 Java 开发问题、中国国学、传统文化和代码爱好者的程序…

SNAT和DNAT原理与应用

iptables的备份和还原 1.写在命令行当中的都是临时配置。 2.把我们的规则配置在 备份&#xff08;导出&#xff09;&#xff1a;iptables-save > /opt/iptables.bak 默认配置文件&#xff1a;/etc/sysconfig/iptables 永久配置&#xff1a;cat /opt/iptables.bak > /etc…