【玩转TableAgent数据智能分析】——个人体验分享

文章目录

  • 前言
  • 上手体验
    • 优势
    • 不足
  • 再次体验
  • 第三次体验
  • 第四次体验
      • 1、找到高价房源和低价房源的特点,看清民宿行业的整体布局
      • 2、了解各个地域的整体价格,优选潜力城市
      • 3、对比各个城市的评分,深入了解不同城市的民宿市场特点
      • 4、对比不同床型价格,确定民宿床型
      • 5、结论
  • 总结

在这里插入图片描述


前言

TableAgent作为新AI时代的数据分析智能体,其功能强大,用途广泛,它给我的第一感觉简直就是数据分析方面的达摩克利斯之剑。本文简单分享一下自己对该平台的一些使用体验,感觉拿来处理、分析各种数据应该会是一个不错的选择。👀
TableAgent体验入口


上手体验

  • 我上传了一张含有全国各民族、性别的人口数量的数据文件,然后我希望得到一张男女不同年龄阶段的人口数量的条形图(如下图第二张自己绘制的图片),并给出一定的分析。看一下平台作出的反馈。
    在这里插入图片描述
    在这里插入图片描述
  • TableAgent读取的数据以及提问的内容
    在这里插入图片描述

在这里插入图片描述

优势

  • 首先令我令我眼前一亮的地方就是在一开头它会给出代码的思维导图——Data Graph,可以说是非常的简洁明了,有的时候一些比较困难的数据处理任务可能会让他卡壳,但是这种数据流的形式确实能带来不错的效果。

在这里插入图片描述
-整个回答的层次也是非常全面:试了几个基本都是按照Data Graph → \xrightarrow{ } Alaya → \xrightarrow{ } Action → \xrightarrow{ } Observation 给出回答的。
在这里插入图片描述

不足

  • 最后给出的回答说女性数据为空,(非常奇怪,因为他读取的数据确实是有的,不清楚是什么问题😦),所以最后给出的答案也就不太准确。
    在这里插入图片描述
  • 可能它也觉得有问题,所以第一次生成答案之后自动又回答的一次。不过,遗憾的是两次回答的都有问题。
    在这里插入图片描述

再次体验

  • 这次使用平台上自带的一些数据来重新体验一下。这次选择的是关于电影点评的一个数据。
    在这里插入图片描述
  • 我给出的需求是按照评论字数从低到高重新排列数据,并找出所有的负面评论,并指出来。
    在这里插入图片描述
    前半部分其实比较好处理,常见的一些大模型应该都具备这个能力。后面设计情感分析的能力相对比较考验它的理解能力了。来看它的回答:
    在这里插入图片描述
  • 从回答中可以看出,在同时处理评论字数负面评论这两个关键词时貌似有些不妥,从评论内容来看对负面评论的筛选能力还是欠缺,但是在评论字数上,对于第一个问题的回答确实是没有问题、准确无误的。猜测可能提问内容涉及两个方向,回答优先级的问题导致后半部分被淡化了。于是这次单独提问看一下回答情况:
    在这里插入图片描述
  • 这次的结果非常不错,指出来的内容全部符合,这几个负面评论吐槽的还真是激烈啊,尤其是第二个,字少但攻击力拉满。而且还给出了问题之外的负面评论集中的电影的恢复,可以说分析的比价全面了。不过这里得插一句,龙叔的十二生肖个人认为还是比较不错的,评价不好的我不赞同。😤
    在这里插入图片描述
  • 所以干脆来看看对十二生肖的负面评价到底有哪些内容:
    在这里插入图片描述
  • 回答筛选的内容还是比较全面的,至于这些具体的评论,留给大家去评价吧。😑

第三次体验

这次让他读取的是某个地区2012年4个月份温度、湿度、降雨量的统计数据,具体内容如下:

在这里插入图片描述

  • 这次我描述了一个比较具体的绘图任务,希望能给出我想要的结果。直接看我的提问和它给出的回答:
    在这里插入图片描述
    在这里插入图片描述

  • 代码生成:
    在这里插入图片描述

  • 仔细看一下绘制的折线图可以发现,基本符合我想要的结果的,通过这幅图也是完全可以进行一定的趋势变化分析。唯一有小问题的地方就是多给出了一个“湿度极值”图例标注,应该是对我的描述的理解出现了一些疏漏。至于这里的 ⋆ \star 标识,实际上标注的位置应该是正确的,但是图片大小显示的问题导致看起来不协调。总体来说,绘制的效果还是可以的。
    在这里插入图片描述

第四次体验

  • 这次依旧体验的是自带的数据(Airbnb的民宿价格&评价),看看能否通过对TableAgent一直提问的方式,直至达到想要的分析结果,数据内容和整体情况如下所示,一共953条数据,平均价格在171左右。
    在这里插入图片描述
    在这里插入图片描述
    这些完整数据可以通过点击左下角底部的dataframe得到:在这里插入图片描述
    另外,可以通过直接点击索引名称右侧的小三角形 ▼ \blacktriangledown 对其降序和升序排列(如果是字符的话则按照首字母的顺序进行排序)。
    在这里插入图片描述

  • 现在假设你是一名商人,现在想要进军民宿市场,但是身边朋友都不看好这个行业,这时你有了TableAgent的神助,看看能否借此完成初步的市场调研。下面开始你的商业分析。

1、找到高价房源和低价房源的特点,看清民宿行业的整体布局

  • 咨询TableAgent:计算所有房源价格的平均价格,然后帮我分析高于平均价格20 %的所有房源和低于平均价格20%的所有房源有什么特点,比如所在城市、评分情况等,具体一点。
  • 回复:
    在这里插入图片描述
  • 分析:从以上内容来看,如果做高端民宿,需要重点参考评分在4.9以上的民宿的发展情况;如果做中低端性价比的民宿,需要重点留意和观察4.8分以下的这些民宿存在的一些问题,后续需要尽可能的规避这些问题,否则很难占领市场。而且可以发现,高端类型的民宿的床型相对比较不固定的,bedqueen bed等,而低端类型bed占比非常大。

2、了解各个地域的整体价格,优选潜力城市

  • 咨询TableAgent:统计每个城市的平均价格,然后绘制排名前7的城市中价格和评分之间的折线图
  • 回复:
    在这里插入图片描述
  • 分析:对于想要一心做高端民宿的你而言,从上面以及结合之前的分析来看,La UnionGianyarMaryland这三所城市可以成为备选的入驻城市。尤其是La Union城市,相比不算太高的价格,但是总体评分很好,整体的民宿的商业环境可以说是非常nice的,也会比较适合“新手开业”。

3、对比各个城市的评分,深入了解不同城市的民宿市场特点

  • 咨询TableAgent:统计每个城市的平均评分,然后绘制排名前7的城市中价格和评分之间的折线图

  • 回复:
    在这里插入图片描述
    在这里插入图片描述

  • 分析:假设以300作为低\高端类型的分界线,North CarllinaLa UnionIceland可以作为值得考虑进军的城市。冰岛估计太远了,就在剩下两个当中选吧。😎
    当然,如果做中低端的,Idaho可以考虑,5.0的评分确实很令人难以相信。(也可能是关于Idaho的数据就1条,然后这1个民宿的评分是5.0)

  • 4、对比不同床型价格,确定民宿床型

  • 咨询TableAgent:将价格(price)除以床位数(Number of bed)得到床位单价,统计不同床型(Type of bed )的床位单价,绘制排名前7的床型中价格和评分的关系

  • 回复:
    在这里插入图片描述
    在这里插入图片描述

  • 分析:一般来说,床位单价较低可能吸引更多的客户,但也可能影响盈利能力,而较高的床位单价可能提高盈利,但也可能减少入住率。从上面分析,来看,queen beds可以说是不二选择了,有着足够盈利空间的床位单价的同时还能保持较高的评分,果断选择它了。

5、结论

综合上面的分析,作为“商业新星”的你可以选择去La Union开一家高端民宿,定价在200$ (高于平均价格的20%)~400$,提供queen beds的床型,应该可以在市场上快速占据一定的席位的。🧐

有一说一,La Union这地方确实不错啊。👍

在这里插入图片描述

总结

TableAgent整体回答的效果还是可以的,对于我们日常处理一些数据可以说是绰绰有余了。界面部分很简洁,代码生成部分看起来也很舒服,尤其是Data Graph部分的流程图,一目了然。功能部分,画图+分析的回答基本能够满足我们的需求。不过经过多次体验来看,在使用的过程中要注意的地方就是在描述问题的时候要尽可能详细、全面、无歧义,这样得到的回答会非常完美,一次性就能得到自己想要的结果。👍
大家可以自己去体验一下效果,总体还是很不错的。
TableAgent体验入口

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/237278.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

Java AQS 阻塞式锁和相关同步器工具的框架

8 J.U.C Java 并发工具包 AQS 原理 AQS:AbstractQueuedSynchronizer(抽象队列同步器),阻塞式锁和相关同步器工具的框架 特点: 用 state 属性来表示资源的状态(分独占模式和共享模式)&#…

TCP/IP 传输层协议

传输层定义了主机应用程序之间端到端的连通性。传输层中最为常见的两个协议分别是传输控制协议TCP(Transmission Control Protocol)和用户数据包协议UDP(User Datagram Protocol)。 TCP协议 TCP是一种面向连接的传输层协议&#…

esp32-s3解决使用蓝牙ble一键配网时,蓝牙ble内存使用的内部空间,空间不足时可采用外部PSRAM

idf.py menuconfig进入到esp32配置界面,配置NimBLE使用外部PSRAM内存即可

pip 离线安装:利用pypi网站进行模块 库的离线安装

离线安装是一种很好的方法,在网络不佳、库版本不明确、复杂库本地编译安装报错时,通过whl文件的下载安装,可以很高效的解决问题。 pypi的网站:https://pypi.org/ 这个网站包含各种你 pip install xxx 的库,离线安装可…

我做了一个在手机灵动岛锁屏看实时网速/步数/下班倒计时/跑步距离/照片/待办/倒计时/手机使用次数/帧率...的软件

我做了一个在手机灵动岛&锁屏看实时网速/步数/下班倒计时/跑步距离/照片/待办/倒计时/手机使用次数/帧率…的软件 Island Widgets 的作用: 提醒您 : 准时下班每天运动陪伴家人保持体重放下手机每日待办当前网速手机使用强度实时热搜现在天气… 初…

Python库学习(十三):爬虫框架Scrapy

微信搜索【猿码记】查看更多文章... 1.介绍 Scrapy是一个用于爬取网站数据的Python框架。它提供了一套强大而灵活的工具,使开发者能够轻松地创建和管理爬虫,从而从网站中提取所需的信息。框架要求Python的版本 3.8 Github Star:49.6k: https://github.c…

【Linux】Linux线程概念和线程控制

文章目录 一、Linux线程概念1.什么是线程2.线程的优缺点3.线程异常4.线程用途5.Linux进程VS线程 二、线程控制1.线程创建2.线程终止3.线程等待4.线程分离 一、Linux线程概念 1.什么是线程 线程是进程内的一个执行流。 我们知道,一个进程会有对应的PCB,…

GEE-Sentinel-2月度时间序列数据合成并导出

系列文章目录 第一章:时间序列数据合成 文章目录 系列文章目录前言时间序列数据合成总结 前言 利用每个月可获取植被指数数据取均值,合成月度平均植被指数,然后将12个月中的数据合成一个12波段的时间数据合成数据。 时间序列数据合成 代码…

ROS2 学习09--ros 中的通信接口的定义以及如何创建自定义msg、srv和action文件

在ROS系统中,无论话题还是服务,或者我们后续将要学习的动作,都会用到一个重要的概念——通信接口。 通信并不是一个人自言自语,而是两个甚至更多个人,你来我往的交流,交流的内容是什么呢?为了让…

数值分析(只为应付考试)

概述 研一时为应付高等工程数学考试整理的有关数值分析部分的内容,目的是为了应付考试。 误差 误差限与有效数字的联系 对于有 n n n 位有效数字的 x x x 的近似值 x ∗ x^* x∗, 其科学计数法表示形式 x ∗ a 1 . a 2 . . . a n 1 0 m ( a 1 ≠ 0 ) x^* …

Python开发GUI常用库PyQt6和PySide6介绍之二:设计师(Designer)

Python开发GUI常用库PyQt6和PySide6介绍之二:设计师(Designer) PySide6和PyQt6都有自己的设计师(Designer),用于可视化地设计和布局GUI应用程序的界面。这些设计师提供了丰富的工具和功能,使开…

文件名生成excel清单,怎么操作?这里有简单办法

文件名生成excel清单,怎么操作?为了整理文件名称,有时候需要将所有的文件名称整理好并且生成excel清单,大家可能还不能理解是什么意思,其实就是将所有文件的名称整理到excel表格里,形成一个清单。这个操作很…

【ECharts】雷达图

let chart echarts.init(this.$refs.radar_chart); let option {title: {text: 关键过程指标,},grid: {left: 0,},legend: {data: [个人, 小组, 团队],bottom: 0,itemWidth: 6,itemHeight: 6,},radar: {// shape: circle,indicator: [{ name: 成交额, max: 30000 },{ name: 成…

yum install net-tools 命令报错,无法安装成功

编辑网卡文件 插入数据,输入: i 保存编辑:输入 Esc 然后:wq

数据结构学习 leetcode64最小路径和

动态规划 题目: 建议看这里,有这道题详细的解析。我觉得写的挺好。 这是我在学动态规划的时候,动手做的一道题。 虽然我在学动态规划,但是我之前学了dps,所以我就想先用dps试着做,结果发现不行&#xf…

使用Gitee中的CI/CD来完成代码的自动部署与发布(使用内网穿透把本地电脑当作服务器使用)

📚目录 📚简介:⚙️ 所需工具:💨内网穿透配置💭工具介绍✨命令安装🎊配置Cpolar🕳️关闭防火墙🥛防火墙端口放行规则(关闭防火墙可以忽略)🍬小章总…

打造明厨亮灶工程,需要哪些AI视频智能算法助力?

旭帆科技AI智能监控可以通过摄像头、传感器和数据处理等技术手段,实时监测厨房人员着装、行为与烟火等,对厨房实时监控进行分析与记录,从而实现明厨亮灶场景的搭建,保障食品安全和服务质量。 1、烟火识别 对于后厨来说&#xff0…

字符串函数的模拟实现(部分字符串函数)

strlen函数模拟 size_t my_strlen(const char* arr) {int count 0;while(*arr){arr;count;}return count;} int main() { printf( " %zd", my_strlen("adsshadsa"));}//模拟实现strlen函数 strcpy函数模拟 char* my_strcpy(char* arr1, const char* ar…

在Windows上使用 Python

本文档旨在概述在 Microsoft Windows 上使用 Python 时应了解的特定于 Windows 的行为。 与大多数UNIX系统和服务不同,Windows系统没有预安装Python。多年来CPython 团队已经编译了每一个 发行版 的Windows安装程序(MSI 包),已便…

C++——C++11(2)

我在我的C异常博客中曾提到,对于异常的处理经常会导致内存泄漏问题, 一种解决方法是异常的重新抛出,还有一种就是RAII,那么RAII的思想体现 在C中就是智能指针,所以接下来我将简单的介绍,什么是RAII&#xf…