2017年第六届数学建模国际赛小美赛A题飓风与全球变暖解题全过程文档及程序

2017年第六届数学建模国际赛小美赛

A题 飓风与全球变暖

原题再现:

  飓风(也包括在西北太平洋被称为“台风”的风暴以及在印度洋和西南太平洋被称为“严重热带气旋”)具有极大的破坏性,往往造成数百人甚至数千人死亡。
  许多气象学家一致认为,在过去的几十年里,全球变暖(大约半摄氏度)已经发生在地球表面,而且这种趋势可能会继续下去。问题是,全球变暖对飓风活动意味着什么?请构造一个合理的模型,测量全球变暖的程度和全球飓风活动的强度,并估计两者之间的关系。

整体求解过程概述(摘要)

  全球变暖被认为是影响飓风强度的重要因素之一。全球变暖对飓风影响的研究已经展开,但尚未得出确切的结论。
  本文通过建立模型来衡量全球变暖的程度和飓风的强度,并得出它们之间的关系。
  在模型1中,建立了反映全球变暖程度的评价指标体系。采用熵权法计算各变量的权重。然后类比动量方程,建立一个综合指标来表征全球变暖的程度。
  在模式2中,我们对海温如何影响单个飓风进行了微观分析。建立运动方程,分析速度梯度和温度梯度之间的关系。然后应用回归分析方法,求出海温、强度、速度、加速度、压力、运动方向之间的相关关系。通过聚类分析将模型推广到一般情况。结果表明,海温直接影响飓风的运动路径,改变加速度的方向和值。海温对飓风的压力和速度也有影响。在此基础上,进一步得出温度与飓风频率密度分布关系不大的结论。
  在模式3中,分别分析了不同地区的飓风强度特征,计算出全球变暖程度的相关性。结果表明,飓风强度与全球蠕虫的关系因地区而异。尤其在东太平洋地区,飓风强度与全球变暖呈负相关。这可以用厄尔尼诺现象来解释。
  在模型4中,我们定义了一个基于总能量耗散的飓风潜在破坏性(PDI)指数来表示飓风的强度,然后进行回归以确定与全球变暖的关系。结果表明,PDI与热带海表温度相关,反映了已有的气候信号,但与飓风频率的关系更为显著。
  在模型5中,我们建立了预测模型,并对PDI和GWD的趋势进行了预测,结果表明全球GWD面临急剧增长,而PDI仍将处于波动之中。最后给出了未来PDI和GWD的可能值。
  最后,分析了本文提出的方法的优缺点。该研究在现实世界中也具有一定的应用价值。

模型假设:

  (1) 数据来源真实可靠
  (2) 全球变暖的程度主要体现在海平面、冰山数量和高度、海表温度、全球温度等方面。
  (3) 全球变暖的程度主要受人口、温室气体排放、森林覆盖率等因素的影响。
  (4) 飓风强度的大小主要受强度等级、飓风频次、各等级飓风频次的影响。

问题分析:

  现将问题分为以下具体分析,根据要求可分为两个子部分:
  建立模型,了解全球变暖对飓风活动的影响。
  构建一个合理的模型,测量全球变暖的程度和全球飓风活动的强度,并估计两者之间的关系。
  解决问题可分为3个步骤:
  分别分析了飓风的运动特征,得出了温度变化对飓风的影响。
  分析全球变暖与不同地区飓风强度的关系。比较得出结论。
  分析全球变暖对全球飓风强度的影响。
  为了解决每个环节的问题,我们建立了综合评价指标体系,定义了三个体系的层次:
  全球变暖影响全球变暖的因素,这些因素表达了飓风强度的程度。每个索引包含不同的对应变量。通过分析各指标之间的关系,可以得出全球变暖对飓风强度的影响。

模型的建立与求解整体论文缩略图

在这里插入图片描述
在这里插入图片描述

全部论文请见下方“ 只会建模 QQ名片” 点击QQ名片即可

部分程序代码:(代码和文档not free)

D=[];
D0=DC;
D1=D0(1:,6);
D2=D0(1:,7);
D3=D0(1:,8);
D4=D0(1:,9);
e1=mean(D1);
e2=mean(D2);
e3=mean(D3);
e4=mean(D4);
d1=std(D1);
d2=std(D2);
d3=std(D3);
d4=std(D4);
for i=1:6349if abs(D1(i)
-e1)>3*d1D0(i,:)=
-1;endif abs(D2(i)
-e2)>3*d1D0(i,:)=
-1;endif abs(D3(i)
-e3)>3*d1D0(i,:)=
-1;endif abs(D4(i)
-e4)>3*d1D0(i,:)=
-1;end
end
for i=1:6349if D0(i,1)~=
-
1D=[D;D0(i,:)];end
end
clc,clear
gmr=xlsread('data'
,'V2:X30'); 
ppl=gmr(:,1); 
carb=gmr(:,2); 
forest=gmr(:,3); 
sst=xlsread('data'
,'I2:I30'); 
ssh=xlsread('data'
,'Q2:Q30'); 
ice=xlsread('data'
,'N2:N30') ; 
sst_entropy=xlsread('data'
,'J2:J30'); 
gmf=[sst ssh ice sst_entropy]; 
temp=xlsread('data'
,'B2:B30');
gmr_min=min(gmr);
gmr_max=max(gmr);
gmf_min=min(gmf);
gmf_max=max(gmf);
for i=1:length(gmr);for j=1:3if j==3
gmr_nor(i,j)=(gmr_max(j)-gmr(i,j))/(gmr_max(j)-gmr_min(j));elsegmr_nor(i,j)=(gmr(i,j)-gmr_min(j))/(gmr_max(j)-gmr_min(j));endend
end
for i=1:length(gmf)for j=1:4if j==3gmf_nor(i,j)=(gmf_max(j)-gmf(i,j))/(gmf_max(j)-gmf_min(j));elsegmf_nor(i,j)=(gmf(i,j)-gmf_min(j))/(gmf_max(j)-gmf_min(j));endend
end
EWr=EntropyWeight(gmr_nor);
EWf=EntropyWeight(gmf_nor);
alpha=gmr_nor*EWr';
beta=gmf_nor*EWf';
GWD=0.5*alpha.*alpha.*beta;
figure 
t=1980:2008;
plot(t,beta,'k',t,alpha,'r')
xlabel('year')
hold on
[ax,h1,h2]=plotyy(t,GWD,t,temp)
set(ax(2),'ytick',[14:0.1:14.7]) 
set(ax(1),'ytick',[0:0.1:1])
set(h1,'color','m');
set(h2,'color','b');
legend('The Present Index of Global Warming','The Motivation of Global Warming','The Extent
of Global Warming','Global Average Temperature')
%xlabel('year'), ylabel('global average temperature '),title('Global Average Temperature')
%figure 
%t=1980:2008;
%plot(t,beta,'k')
%xlabel('year'), ylabel('the present index of global warming beta'),title('The Present Index of 
Global Warming')
%figure
%plot(t,alpha,'r')
%xlabel('year'), ylabel('the motivation of global warming alpha'),title('The Motivation of Global 
Warming')
%figure
%plot(t,GWD)
%xlabel('year'), ylabel('GWD'),title('The Extent of Global Warming')
%figure
%plot(t,temp,'m')
%xlabel('year'), ylabel('global average temperature '),title('Global Average Temperature')
function weights = EntropyWeight(R)
[rows,cols]=size(R); 
k=1/log(rows); 
f=zeros(rows,cols); 
sumBycols=sum(R,1); 
for i=1:rowsfor j=1:colsf(i,j)=R(i,j)./sumBycols(1,j);end
end
lnfij=zeros(rows,cols); 
for i=1:rowsfor j=1:colsif f(i,j)==0lnfij(i,j)=0;elselnfij(i,j)=log(f(i,j));endend
end
Hj=-k*(sum(f.*lnfij,1)); 
weights=(1-Hj)/(cols-sum(Hj));
end
clc
clear
I=xlsread('飓风数据.xlsx','Sheet1','I2:T61');
yyy=xlsread('飓风数据.xlsx','Sheet1','A2:A61');
E=zeros(60,1);
for ii=1:60E(ii)=entropy(I(ii,:));
end
clc
clear
I=xlsread(' 飓风数据.xlsx','I2:T61');
yyy=xlsread('飓风数据.xlsx','Sheet1','A2:A61');
E=zeros(60,1);
for ii=1:60E(ii)=entropy(I(ii,:));
end
全部论文请见下方“ 只会建模 QQ名片” 点击QQ名片即可

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/235468.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

UE4移动端最小包优化实践

移动端对于包大小有着严苛的要求,然而UE哪怕是一个空工程打出来也有90+M,本文以一个复杂的工程为例,探索怎么把包大小降低到最小。 一、工程简介 工程包含代码、插件、资源、iOS原生库工程。 二、按官方文档进行基础优化 官方文档 1、勾选Use Pak File和Create comp…

YOLOv5性能评估指标->mAP、Precision、Recall、FPS、Confienc (讲解论文关注的主要指标)

简介 这篇博客,主要给大家讲解我们在训练yolov5时生成的结果文件中各个图片及其中指标的含义,帮助大家更深入的理解,以及我们在评估模型时和发表论文时主要关注的参数有那些。本文通过举例训练过程中的某一时间的结果来帮助大家理解&#xf…

npm安装依赖报错ERESOLVE unable to resolve dependency tree(我是在taro项目中)(node、npm 版本问题)

换了电脑之后新电脑安装包出错 👇👇👇 npm install 安装包报错 ERESOLVE unable to resolve dependency tree 百度后尝试使用 npm install --force 还是报错 参考 有人说是 node 版本和 npm 版本的问题 参考 新电脑 node版本:16.1…

ros2机器人常规控制流程

The joint_state_publisher reads the robot_description parameter from the parameter server, finds all of the non-fixed joints and publishes a JointState message with all those joints defined.也就是说如果我们不需要控制机器人运动,只需要一个节点就可…

自学精灵--专业的编程学习网站

这是我看过的最靠谱的编程学习网站,名字是:自学精灵,网站是:learn.skyofit.com。(某度搜"自学精灵"也可找到此站,搜不到可以用必应搜)。 自学精灵是全网最强的学习平台,我…

STM32 OLED 显示原理的讲解以及OLED显示汉字与图片的代码

STM 32 OLED 显示原理的讲解以及OLED显示汉字与图片的代码 本文主要涉及OLED显示原理的讲解以及OLED显示汉字与图片的代码。 文章目录 STM 32 OLED 显示原理的讲解以及OLED显示汉字与图片的代码一、 OLED简介1.1 OLED 的特点1.2 OLED 8080并行接口信号线说明1.3 OLED控制器SSD1…

UE5 runtime模式下自定义视口大小和位置并跟随分辨率自适应缩放

本文旨在解决因UI问题导致屏幕中心位置不对的问题 处理前的现象:如果四周UI透明度都为1,那么方块的位置就不太对,没在中心 处理后的现象: 解决办法:自定义大小和视口偏移 创建一个基于子系统的类或者蓝图函数库(什么类…

使用opencv实现图像中几何图形检测

1 几何图形检测介绍 1.1 轮廓(contours) 什么是轮廓,简单说轮廓就是一些列点相连组成形状、它们拥有同样的颜色、轮廓发现在图像的对象分析、对象检测等方面是非常有用的工具,在OpenCV 中使用轮廓发现相关函数时候要求输入图像是二值图像,这…

Apache Tomcat httpoxy 安全漏洞 CVE-2016-5388 已亲自复现

Apache Tomcat httpoxy 安全漏洞 CVE-2016-5388 已亲自复现 漏洞名称漏洞描述影响版本 漏洞复现环境搭建漏洞利用修复建议 总结 漏洞名称 漏洞描述 在Apache Tomcat中发现了一个被归类为关键的漏洞,该漏洞在8.5.4(Application Server Soft ware)以下。受影响的是组…

Windows下安装MongoDB实践总结

本文记录Windows环境下的MongoDB安装与使用总结。 【1】官网下载 官网下载地址:Download MongoDB Community Server | MongoDB 这里可以选择下载zip或者msi,zip是解压后自己配置,msi是傻瓜式一键安装。这里我们分别对比进行实践。 【2】ZI…

车载V2X方案的选型分享

ACX200T面向 5G车联网C-V2X 应用的安全芯片,满足V2X场景下消息认证的专用安全芯片,该款芯片采用公司自主的 高速硬件加密引擎 ,支 持国家标准SM1、SM2、SM3、SM4密码算法,同时支持国际ECDSA、AES、SHA-1密码算法。可实现网联汽车云…

使用包、Crate 和模块管理项目(下)

1、使用 use 关键字将路径引入作用域 在之前的示例中我们引用模块中的函数或者结构体之类的,都是需要用到相对路径或者绝对路径去引用,然尔在这里,有一种方法可以简化这个过程。我们可以使用 use 关键字创建一个短路径,然后就可以…

云原生扫盲篇

What 云原生加速了应用系统与基础设施资源之间的解耦,向下封装资源以便将复杂性下沉到基础设施层;向上支撑应用,让开发者更关注业务价值 云原生是一种构建和运行应用程序的方法,也是一套技术体系和方法论. Cloud 表示应用程序位于云中而不是传统的数据中心Native表示应用程序从…

C# NPOI导出datatable----Excel模板画图表

1、创建Excel模板 2、安装NPOI管理包 3、创建工作簿 (XLSX和XLS步骤一样,以XLS为例) IWorkbook workbook null; string time DateTime.Now.ToString("yyyyMMddHHmmss"); string excelTempPath Application.StartupPath "…

Apache Pulsar 技术系列 - PulsarClient 实现解析

导语 Apache Pulsar 是一个多租户、高性能的服务间消息传输解决方案,支持多租户、低延时、读写分离、跨地域复制(GEO replication)、快速扩容、灵活容错等特性。同时为了达到高性能,低延时、高可用,Pulsar 在客户端也…

快速从图中提取曲线坐标数据的在线工具WebPlotDigitizer

快速从图中提取曲线坐标数据的在线工具WebPlotDigitizer 1 介绍2 WebPlotDigitizer在线版的使用2.1 上传图像2.2 点击横纵坐标点:2.3 选择曲线 3 查看数据参考 1 介绍 写论文时要对比别人曲线图、点图、柱形图的数据,但是只有图没有原始数据怎么办&…

最新国内可用使用GPT4.0,GPT语音对话,Midjourney绘画,DALL-E3文生图

一、前言 ChatGPT3.5、GPT4.0、GPT语音对话、Midjourney绘画,相信对大家应该不感到陌生吧?简单来说,GPT-4技术比之前的GPT-3.5相对来说更加智能,会根据用户的要求生成多种内容甚至也可以和用户进行创作交流。 然而,GP…

【优化】XXLJOB修改为使用虚拟线程

【优化】XXLJOB修改为使用虚拟线程 新建这几个目录 类&#xff0c; 去找项目对应的xxljob的源码 主要是将 new Thread 改为 虚拟线程 Thread.ofVirtual().name("VT").unstarted 以下代码是 xxljob 2.3.0版本 举一反三 去修改对应版本的代码 <!-- 定…

计算机基础以及实施运维工程师的介绍

目录 什么是实施、运维工程师 实施工程师 实施工程师的职责 什么是运维工程师 运维功工程师的职责 需要的技术 计算机的介绍 CPU 存储器 IO 系统总线 主板 BIOS 什么是实施、运维工程师 实施工程师 纯实施工程师是指在工程项目实施阶段专门负责实施工作的工程师。与其他…

大模型赋能“AI+电商”,景联文科技提供高质量电商场景数据

据新闻报道&#xff0c;阿里巴巴旗下淘天集团和国际数字商业集团都已建立完整的AI团队。 淘天集团已经推出模特图智能生成、官方客服机器人、万相台无界版等AI工具&#xff0c;训练出了自己的大模型产品 “星辰”&#xff1b; 阿里国际商业集团已成立AI Business&#xff0c;…