【深度学习】序列生成模型(六):评价方法计算实例:计算ROUGE-N得分【理论到程序】

文章目录

  • 一、BLEU-N得分(Bilingual Evaluation Understudy)
  • 二、ROUGE-N得分(Recall-Oriented Understudy for Gisting Evaluation)
    • 1. 定义
    • 2. 计算
      • N=1
      • N=2
    • 3. 程序

  给定一个生成序列“The cat sat on the mat”和两个参考序列“The cat is on the mat”“The bird sat on the bush”分别计算BLEU-N和ROUGE-N得分(N=1或N =2时).

  • 生成序列 x = the cat sat on the mat \mathbf{x}=\text{the cat sat on the mat} x=the cat sat on the mat
  • 参考序列
    • s ( 1 ) = the cat is on the mat \mathbf{s}^{(1)}=\text{the cat is on the mat} s(1)=the cat is on the mat
    • s ( 2 ) = the bird sat on the bush \mathbf{s}^{(2)}=\text{the bird sat on the bush} s(2)=the bird sat on the bush

一、BLEU-N得分(Bilingual Evaluation Understudy)

  【深度学习】序列生成模型(五):评价方法计算实例:计算BLEU-N得分

二、ROUGE-N得分(Recall-Oriented Understudy for Gisting Evaluation)

在这里插入图片描述

1. 定义

  设 x \mathbf{x} x 为从模型分布 p θ p_{\theta} pθ 中生成的一个候选序列, s ( 1 ) , ⋯ , s ( K ) \mathbf{s^{(1)}}, ⋯ , \mathbf{s^{(K)}} s(1),,s(K) 为从真实数据分布中采样得到的一组参考序列, W \mathcal{W} W 为从参考序列中提取N元组合的集合,ROUGE-N算法的定义为:

ROUGE-N ( x ) = ∑ k = 1 K ∑ w ∈ W min ⁡ ( c w ( x ) , c w ( s ( k ) ) ) ∑ k = 1 K ∑ w ∈ W c w ( s ( k ) ) \text{ROUGE-N}(\mathbf{x}) = \frac{\sum_{k=1}^{K} \sum_{w \in \mathcal{W}} \min(c_w(\mathbf{x}), c_w(\mathbf{s}^{(k)}))}{\sum_{k=1}^{K} \sum_{w \in \mathcal{W}} c_w(\mathbf{s}^{(k))}} ROUGE-N(x)=k=1KwWcw(s(k))k=1KwWmin(cw(x),cw(s(k)))

其中 c w ( x ) c_w(\mathbf{x}) cw(x) 是N元组合 w w w 在生成序列 x \mathbf{x} x 中出现的次数, c w ( s ( k ) ) ) c_w(\mathbf{s}^{(k))}) cw(s(k))) 是N元组合 w w w 在参考序列 s ( k ) \mathbf{s}^{(k)} s(k) 中出现的次数。

2. 计算

N=1

  • 生成序列 x = the cat sat on the mat \mathbf{x}=\text{the cat sat on the mat} x=the cat sat on the mat
  • 参考序列
    • s ( 1 ) = the cat is on the mat \mathbf{s}^{(1)}=\text{the cat is on the mat} s(1)=the cat is on the mat
    • s ( 2 ) = the bird sat on the bush \mathbf{s}^{(2)}=\text{the bird sat on the bush} s(2)=the bird sat on the bush
  • W = the, cat, is, on, mat, bird, sat, bush  \mathcal{W}=\text{ {the, cat, is, on, mat, bird, sat, bush }} W= the, cat, is, on, mat, bird, sat, bush 
w w w c w ( x ) c_w(\mathbf{x}) cw(x) c w ( s ( 1 ) ) c_w(\mathbf{s^{(1)}}) cw(s(1)) c w ( s ( 2 ) ) c_w(\mathbf{s^{(2)}}) cw(s(2)) min ⁡ ( c w ( x ) , c w ( s ( 1 ) ) \min(c_w(\mathbf{x}), c_w(\mathbf{s}^{(1)}) min(cw(x),cw(s(1)) min ⁡ ( c w ( x ) , c w ( s ( 2 ) ) \min(c_w(\mathbf{x}), c_w(\mathbf{s}^{(2)}) min(cw(x),cw(s(2))
the22222
cat11010
is01000
on11111
mat11010
bird00100
sat10101
bush00100
  • 分子 ∑ k = 1 K ∑ w ∈ W min ⁡ ( c w ( x ) , c w ( s ( k ) ) ) \sum_{k=1}^{K} \sum_{w \in \mathcal{W}} \min(c_w(\mathbf{x}), c_w(\mathbf{s}^{(k)})) k=1KwWmin(cw(x),cw(s(k)))
    • ∑ w ∈ W min ⁡ ( c w ( x ) , c w ( s ( 1 ) ) = 2 + 1 + 0 + 1 + 1 + 0 + 0 + 0 = 5 \sum_{w \in \mathcal{W}} \min(c_w(\mathbf{x}), c_w(\mathbf{s}^{(1)})=2+1+0+1+1+0+0+0=5 wWmin(cw(x),cw(s(1))=2+1+0+1+1+0+0+0=5
    • ∑ w ∈ W min ⁡ ( c w ( x ) , c w ( s ( 2 ) ) = 2 + 0 + 0 + 1 + 0 + 0 + 1 + 0 = 4 \sum_{w \in \mathcal{W}} \min(c_w(\mathbf{x}), c_w(\mathbf{s}^{(2)})=2+0+0+1+0+0+1+0=4 wWmin(cw(x),cw(s(2))=2+0+0+1+0+0+1+0=4
    • ∑ k = 1 2 ∑ w ∈ W min ⁡ ( c w ( x ) , c w ( s ( k ) ) ) = ∑ w ∈ W min ⁡ ( c w ( x ) , c w ( s ( 1 ) ) ) + ∑ w ∈ W min ⁡ ( c w ( x ) , c w ( s ( 2 ) ) ) = 5 + 4 = 9 \sum_{k=1}^{2} \sum_{w \in \mathcal{W}} \min(c_w(\mathbf{x}), c_w(\mathbf{s}^{(k)}))=\sum_{w \in \mathcal{W}} \min(c_w(\mathbf{x}), c_w(\mathbf{s}^{(1)}))+\sum_{w \in \mathcal{W}} \min(c_w(\mathbf{x}), c_w(\mathbf{s}^{(2)}))=5+4=9 k=12wWmin(cw(x),cw(s(k)))=wWmin(cw(x),cw(s(1)))+wWmin(cw(x),cw(s(2)))=5+4=9
  • 分母 ∑ k = 1 K ∑ w ∈ W c w ( s ( k ) ) \sum_{k=1}^{K} \sum_{w \in \mathcal{W}} c_w(\mathbf{s}^{(k)}) k=1KwWcw(s(k))
    • ∑ w ∈ W c w ( s ( 1 ) ) = 6 \sum_{w \in \mathcal{W}} c_w(\mathbf{s}^{(1))}=6 wWcw(s(1))=6
    • ∑ w ∈ W c w ( s ( 2 ) ) = 6 \sum_{w \in \mathcal{W}} c_w(\mathbf{s}^{(2)})=6 wWcw(s(2))=6
    • ∑ k = 1 2 ∑ w ∈ W c w ( s ( k ) ) = ∑ w ∈ W c w ( s ( 1 ) ) + ∑ w ∈ W c w ( s ( 2 ) ) = 12 \sum_{k=1}^{2} \sum_{w \in \mathcal{W}} c_w(\mathbf{s}^{(k)})= \sum_{w \in \mathcal{W}} c_w(\mathbf{s}^{(1)})+ \sum_{w \in \mathcal{W}} c_w(\mathbf{s}^{(2)})=12 k=12wWcw(s(k))=wWcw(s(1))+wWcw(s(2))=12
  • ROUGE-N ( x ) = ∑ k = 1 K ∑ w ∈ W min ⁡ ( c w ( x ) , c w ( s ( k ) ) ) ∑ k = 1 K ∑ w ∈ W c w ( s ( k ) ) = 5 + 4 6 + 6 = 9 12 = 0.75 \text{ROUGE-N}(\mathbf{x}) = \frac{\sum_{k=1}^{K} \sum_{w \in \mathcal{W}} \min(c_w(\mathbf{x}), c_w(\mathbf{s}^{(k)}))}{\sum_{k=1}^{K} \sum_{w \in \mathcal{W}} c_w(\mathbf{s}^{(k))}}=\frac{5+4}{6+6}=\frac{9}{12}=0.75 ROUGE-N(x)=k=1KwWcw(s(k))k=1KwWmin(cw(x),cw(s(k)))=6+65+4=129=0.75

N=2

  • 生成序列 x = the cat sat on the mat \mathbf{x}=\text{the cat sat on the mat} x=the cat sat on the mat
  • 参考序列
    • s ( 1 ) = the cat is on the mat \mathbf{s}^{(1)}=\text{the cat is on the mat} s(1)=the cat is on the mat
    • s ( 2 ) = the bird sat on the bush \mathbf{s}^{(2)}=\text{the bird sat on the bush} s(2)=the bird sat on the bush
  • W = the cat, cat is, is on, on the, the mat, the bird, bird sat, sat on, the bush  \mathcal{W}=\text{ {the cat, cat is, is on, on the, the mat, the bird, bird sat, sat on, the bush }} W= the cat, cat is, is on, on the, the mat, the bird, bird sat, sat on, the bush 
w w w c w ( x ) c_w(\mathbf{x}) cw(x) c w ( s ( 1 ) ) c_w(\mathbf{s^{(1)}}) cw(s(1)) c w ( s ( 2 ) ) c_w(\mathbf{s^{(2)}}) cw(s(2)) min ⁡ ( c w ( x ) , c w ( s ( 1 ) ) \min(c_w(\mathbf{x}), c_w(\mathbf{s}^{(1)}) min(cw(x),cw(s(1)) min ⁡ ( c w ( x ) , c w ( s ( 2 ) ) \min(c_w(\mathbf{x}), c_w(\mathbf{s}^{(2)}) min(cw(x),cw(s(2))
the cat11010
cat is01000
is on01000
on the11111
the mat11000
the bird00100
bird sat00100
sat on10111
the bush00100
  • 分子 ∑ k = 1 K ∑ w ∈ W min ⁡ ( c w ( x ) , c w ( s ( k ) ) ) \sum_{k=1}^{K} \sum_{w \in \mathcal{W}} \min(c_w(\mathbf{x}), c_w(\mathbf{s}^{(k)})) k=1KwWmin(cw(x),cw(s(k)))
    • ∑ w ∈ W min ⁡ ( c w ( x ) , c w ( s ( 1 ) ) = 3 \sum_{w \in \mathcal{W}} \min(c_w(\mathbf{x}), c_w(\mathbf{s}^{(1)})=3 wWmin(cw(x),cw(s(1))=3
    • ∑ w ∈ W min ⁡ ( c w ( x ) , c w ( s ( 2 ) ) = 2 \sum_{w \in \mathcal{W}} \min(c_w(\mathbf{x}), c_w(\mathbf{s}^{(2)})=2 wWmin(cw(x),cw(s(2))=2
    • ∑ k = 1 2 ∑ w ∈ W min ⁡ ( c w ( x ) , c w ( s ( k ) ) ) = ∑ w ∈ W min ⁡ ( c w ( x ) , c w ( s ( 1 ) ) ) + ∑ w ∈ W min ⁡ ( c w ( x ) , c w ( s ( 2 ) ) ) = 3 + 2 = 5 \sum_{k=1}^{2} \sum_{w \in \mathcal{W}} \min(c_w(\mathbf{x}), c_w(\mathbf{s}^{(k)}))=\sum_{w \in \mathcal{W}} \min(c_w(\mathbf{x}), c_w(\mathbf{s}^{(1)}))+\sum_{w \in \mathcal{W}} \min(c_w(\mathbf{x}), c_w(\mathbf{s}^{(2)}))=3+2=5 k=12wWmin(cw(x),cw(s(k)))=wWmin(cw(x),cw(s(1)))+wWmin(cw(x),cw(s(2)))=3+2=5
  • 分母 ∑ k = 1 K ∑ w ∈ W c w ( s ( k ) ) \sum_{k=1}^{K} \sum_{w \in \mathcal{W}} c_w(\mathbf{s}^{(k)}) k=1KwWcw(s(k))
    • ∑ w ∈ W c w ( s ( 1 ) ) = 5 \sum_{w \in \mathcal{W}} c_w(\mathbf{s}^{(1))}=5 wWcw(s(1))=5
    • ∑ w ∈ W c w ( s ( 2 ) ) = 5 \sum_{w \in \mathcal{W}} c_w(\mathbf{s}^{(2)})=5 wWcw(s(2))=5
    • ∑ k = 1 2 ∑ w ∈ W c w ( s ( k ) ) = ∑ w ∈ W c w ( s ( 1 ) ) + ∑ w ∈ W c w ( s ( 2 ) ) = 10 \sum_{k=1}^{2} \sum_{w \in \mathcal{W}} c_w(\mathbf{s}^{(k)})= \sum_{w \in \mathcal{W}} c_w(\mathbf{s}^{(1)})+ \sum_{w \in \mathcal{W}} c_w(\mathbf{s}^{(2)})=10 k=12wWcw(s(k))=wWcw(s(1))+wWcw(s(2))=10
  • ROUGE-N ( x ) = ∑ k = 1 K ∑ w ∈ W min ⁡ ( c w ( x ) , c w ( s ( k ) ) ) ∑ k = 1 K ∑ w ∈ W c w ( s ( k ) ) = 3 + 2 5 + 5 = 5 10 = 0.5 \text{ROUGE-N}(\mathbf{x}) = \frac{\sum_{k=1}^{K} \sum_{w \in \mathcal{W}} \min(c_w(\mathbf{x}), c_w(\mathbf{s}^{(k)}))}{\sum_{k=1}^{K} \sum_{w \in \mathcal{W}} c_w(\mathbf{s}^{(k))}}=\frac{3+2}{5+5}=\frac{5}{10}=0.5 ROUGE-N(x)=k=1KwWcw(s(k))k=1KwWmin(cw(x),cw(s(k)))=5+53+2=105=0.5

3. 程序

main_string = 'the cat sat on the mat'
string1 = 'the cat is on the mat'
string2 = 'the bird sat on the bush'words = list(set(string1.split(' ')+string2.split(' ')))  # 去除重复元素total_occurrences, matching_occurrences = 0, 0
for word in words:matching_occurrences += min(main_string.count(word), string1.count(word)) + min(main_string.count(word), string2.count(word))total_occurrences += string1.count(word) + string2.count(word)print(matching_occurrences / total_occurrences)bigrams = []
split1 = string1.split(' ')
for i in range(len(split1) - 1):bigrams.append(split1[i] + ' ' + split1[i + 1])split2 = string2.split(' ')
for i in range(len(split2) - 1):bigrams.append(split2[i] + ' ' + split2[i + 1])bigrams = list(set(bigrams))  # 去除重复元素total_occurrences, matching_occurrences = 0, 0
for bigram in bigrams:matching_occurrences += min(main_string.count(bigram), string1.count(bigram)) + min(main_string.count(bigram), string2.count(bigram))total_occurrences += string1.count(bigram) + string2.count(bigram)print(matching_occurrences / total_occurrences)

输出:

0.75
0.5

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/234441.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

JavaSE 搜索树

目录 1 概念2 操作2.1 查找2.2 插入2.3 删除 3 性能分析4 和 java 类集的关系 1 概念 二叉搜索树 又称 二叉排序树,它是一棵空树,或者是具有以下性质的二叉树: 若它的左子树不为空,则左子树上所有节点的值都小于根节点的值;若它…

js使用promise对象达到promise waiting

async getInfoFormName() {return new Promise((resolve, reject) > {let infoForm: string;if (this.showBox "basic-info-box") {infoForm "basicInfoForm";} else {infoForm "extendInfoForm";}resolve(infoForm);});} 使用这个Priomi…

[Java][File]文件的创建与删除

对一个File类型的对象而言 1.创建一个新的空的文件 createNewFile 2.制作单级文件夹 mkdir 3.制作多级文件夹 mkdirs 4.删除文件、空文件夹 delete 注意:这个方法不会走回收站的 import java.io.File; import java.io.IOException;public class Main{public static …

Logistic Regression逻辑线性回归(基于diabetes数据集)

目录 介绍: 1、Confusion Matrix: 2、ROC(Receiver Operating Characteristic) 一、数据处理 二、建模 三、 confusion_matrix 四、 ROC(Receiver Operating Characteristic) 介绍: L…

class085 数位dp-下【算法】

class085 数位dp-下【算法】 code1 P2657 [SCOI2009] windy 数 // windy数 // 不含前导零且相邻两个数字之差至少为2的正整数被称为windy数 // windy想知道[a,b]范围上总共有多少个windy数 // 测试链接 : https://www.luogu.com.cn/problem/P2657 // 请同学们务必参考如下代码…

好习惯的重要性

养成习惯的五个步骤 提高认识 引导孩子对养成某个习惯产生兴趣明确规范 让孩子对养成某个好习惯的具体规范持久训练 坚持不懈的行为规范,让孩子由被动到主动再到自动及时评估 让孩子在成功的体验中养成良好习惯形成环境 让家庭生活和学校环境乃至社会风气成为孩子养…

7款创意性前端源码特效资源分享(附在线预览效果)

分享7款非常不错炫酷的前端特效源码 其中包含css动画特效、js原生特效、svg特效等 下面我会给出特效样式图或演示效果图 但你也可以点击在线预览查看源码的最终展示效果及下载源码资源 CSS绘制iPhone 14带动态岛 纯CSS绘制iPhone 14带动态岛模型 运行初始化时还附带出场动画 …

微信小程序动态导航栏(uniapp + vant)

本文使用到vant的van-tabbar组件来实现 一、uniapp整合vant ui vant小程序版本:https://vant-contrib.gitee.io/vant-weapp/#/home 注:vant并没有uniapp的版本,所以此处是引入小程序版本的ui 1. 下载vant编译后代码 https://github.com/youzan/vant-weapp/tree/dev/dist 2…

vue中对keep-alive的理解

vue中对keep-alive的理解 介绍使用方法参数解析使用示例 介绍 keep-alive是 Vue 内置的一个组件,可以使被包含的组件保留状态,或避免重新渲染。它有两个属性: include(包含的组件缓存) 与 exclude(排除的组件不缓存,优先级大于include) 。 使…

CentOs7.x安装部署SeaTunnelWeb遇到的坑

CentOs7.x安装部署SeaTunnelWeb遇到的坑 文章目录 1. 环境2. SeaTunnel安装部署2.1下载安装包2.2 设置环境变量2.3 安装连接器插件2.4 拷贝jar包到lib下2.5 启动命令2.6 执行官方client提交任务demo 3. SeaTunnel-Web安装部署3.1 下载安装包3.2 初始化数据库脚本或修改配置appl…

element plus 表格el-table行多选单选

1 行多选-点击checkbox 添加一个 el-table-column&#xff0c;设 type 属性为 selection 即可 <template><div class"box"><el-table :data"tableData" selection-change"handleSelectionChange"><el-table-column type&…

【单调栈】LeetCode:1944队列中可以看到的人数

作者推荐 【贪心算法】【中位贪心】.执行操作使频率分数最大 题目 有 n 个人排成一个队列&#xff0c;从左到右 编号为 0 到 n - 1 。给你以一个整数数组 heights &#xff0c;每个整数 互不相同&#xff0c;heights[i] 表示第 i 个人的高度。 一个人能 看到 他右边另一个人…

计算机网络 运输层下 | TCP概述 可靠传输 流量控制 拥塞控制 连接管理

文章目录 3 运输层主要协议 TCP 概述3.1 TCP概述 特点3.2 TCP连接RSVP资源预留协议 4 TCP可靠传输4.1 可靠传输工作原理4.1.1 停止等待协议4.1.2 连续ARQ协议 4.2 TCP可靠通信的具体实现4.2.1 以字节为单位的滑动窗口4.2.2 超时重传时间的选择4.2.3 选择确认SACK 5 TCP的流量控…

(C)一些题14

1.下列定义不正确的是&#xff08;C A .# define PI 3.141592 C . int max ( x , y ); int x , y ;{} B .# define S 345 D . static char c ; 函数没有定义x&#xff0c;y的类型 2&#xff0e;以下程序段的输出结果为&#xff08;D char c []" abc "; int i …

边缘计算有哪些常用场景?TSINGSEE边缘AI视频分析技术行业解决方案

随着ChatGPT生成式人工智能的爆发&#xff0c;AI技术在业界又掀起一波新浪潮。值得关注的是&#xff0c;边缘AI智能也在AI人工智能技术进步的基础上得到了快速发展。IDC跟踪报告数据显示&#xff0c;2021年我国的边缘计算服务器整体市场规模达到33.1亿美元&#xff0c;预计2020…

前端面试题(计算机网络):GET和POST的请求的区别是什么?

声明&#xff1a;什么是幂等请求&#xff1f;答&#xff1a;不管对同一资源请求多少次返回的结果都相同 Post 和 Get 是 HTTP 请求的两种方法&#xff0c;其区别如下&#xff1a; 应用场景&#xff1a; GET 请求是一个幂等请求&#xff0c;一般 Get 请求用于对服务器资源不会…

2023年中国法拍房用户画像和数据分析

法拍房主要平台 法拍房主要平台有3家&#xff0c;分别是阿里、京东和北交互联平台。目前官方认定纳入网络司法拍卖的平台共有7家&#xff0c;其中阿里资产司法拍卖平台的挂拍量最大。 阿里法拍房 阿里法拍房数据显示2017年&#xff0c;全国法拍房9000套&#xff1b;2018年&a…

HuatuoGPT模型介绍

文章目录 HuatuoGPT 模型介绍LLM4Med&#xff08;医疗大模型&#xff09;的作用ChatGPT 存在的问题HuatuoGPT的特点ChatGPT 与真实医生的区别解决方案用于SFT阶段的混合数据基于AI反馈的RL 评估单轮问答多轮问答人工评估 HuatuoGPT 模型介绍 HuatuoGPT&#xff08;华佗GPT&…

Web请求与响应

目录 Postman Postman简介 Postman的使用 请求 简单参数 实体参数 数组参数 集合参数 日期参数 Json参数 路径参数 响应 ResponseBody 统一响应结果 Postman Postman简介 postman是一款功能强大的网页调试与发送网页http请求的Chrome插件&#xff0c;常用于进行…

故障排查:shell脚本输出乱码

博客主页&#xff1a;https://tomcat.blog.csdn.net 博主昵称&#xff1a;农民工老王 主要领域&#xff1a;Java、Linux、K8S 期待大家的关注&#x1f496;点赞&#x1f44d;收藏⭐留言&#x1f4ac; 目录 故障详情故障原因解决方法iconv命令介绍 故障详情 最近的工作中遇到一…