创建型模式 | 单例模式

一、单例模式

单例模式(Singleton Pattern),使用最广泛的设计模式之一。其意图是保证一个类仅有一个实例被构造,并提供一个访问它的全局访问接口,该实例被程序的所有模块共享。

1、饿汉式

1.1、基础版本

在程序启动后立刻构造单例,饿汉式实现一个单例类步骤如下:

  • 定义一个单例类
  • 私有化构造函数,防止外界直接创建单例类的对象
  • 禁用拷贝构造,移动赋值等函数,可以私有化,也可以直接使用=delete
  • 使用一个公有的静态方法获取该实例
  • 确保在第一次调用之前该实例被构造

代码实现

#include <iostream>
#include <string>
using namespace std;// 单例类
class Singleton {
protected:Singleton() { std::cout << "Singleton: call Constructor\n"; };static Singleton *m_pInst;public:Singleton(const Singleton &) = delete;Singleton &operator=(const Singleton &) = delete;virtual ~Singleton() { std::cout << "Singleton: call Destructor\n"; }static Singleton* GetInstance() {return m_pInst;}
};Singleton *Singleton::m_pInst = new Singleton;int main()
{Singleton *pInst1 = Singleton::GetInstance();Singleton *pInst2 = Singleton::GetInstance();cout << "pInst1 : " << pInst1 << endl;cout << "pInst2 : " << pInst2 << endl;return 0;
}

输出结果

Singleton: call Constructor
pInst1 : 0xf71760
pInst2 : 0xf71760Process returned 0 (0x0)   execution time : 0.203 s
Press any key to continue.

从输出结果可以看出来,在执行main函数之前,单例类对象已经被创建出来。获取实例的函数也不需要进行判空操作,因此也就不用双重检测锁来保证线程安全了,它本身已经是线程安全状态了,但是内存泄漏的问题还是要解决的。

1.2、基于资源管理的饿汉实现

内存泄漏解决方法有两个:智能指针&静态嵌套类。

1.2.1、智能指针解决方案

将实例指针更换为智能指针,另外智能指针在初始化时,还需要添加公有的销毁函数,因为析构函数私有化了。

#include <iostream>
#include <string>
#include <mutex>
#include <memory>
#include <thread>
using namespace std;// 单例类
class Singleton {
protected:Singleton() { std::cout << "Singleton: call Constructor\n"; };static shared_ptr<Singleton> instance;private:Singleton(const Singleton &) = delete;Singleton &operator=(const Singleton &) = delete;virtual ~Singleton() { std::cout << "Singleton: call Destructor\n"; }public:// 自定义销毁实例方法static void DestoryInstance(Singleton* x) {delete x;}static shared_ptr<Singleton> GetInstance() {return instance;}
};// 初始化
shared_ptr<Singleton> Singleton::instance(new Singleton(), DestoryInstance);int main()
{cout << "main开始" << endl;thread t1([] {shared_ptr<Singleton> s1 = Singleton::GetInstance();});thread t2([] {shared_ptr<Singleton> s2 = Singleton::GetInstance();});t1.join();t2.join();cout << "main结束" << endl;return 0;
}

输出结果

Singleton: call Constructor
main开始
main结束
Singleton: call DestructorProcess returned 0 (0x0)   execution time : 0.116 s
Press any key to continue.

从输出结果可以看出来实例内存在程序运行结束后被正常释放。

1.2.2、静态嵌套类解决方案

类中定义一个嵌套类,初始化该类的静态对象,当程序结束时,该对象进行析构的同时,将单例实例也删除了。

#include <iostream>
#include <string>
#include <mutex>
#include <memory>
#include <thread>
using namespace std;// 单例类
class Singleton {// 定义一个删除器(嵌套类)class Deleter {public:Deleter() {};~Deleter() {if (m_pInst != nullptr) {cout << "删除器启动" << endl;delete m_pInst;m_pInst = nullptr;}}};protected:Singleton() { std::cout << "Singleton: call Constructor\n"; };static Deleter m_deleter;static Singleton* m_pInst;private:Singleton(const Singleton &) = delete;Singleton &operator=(const Singleton &) = delete;virtual ~Singleton() { std::cout << "Singleton: call Destructor\n"; }public:static Singleton* GetInstance() {return m_pInst;}
};Singleton *Singleton::m_pInst = new Singleton;
Singleton::Deleter Singleton::m_deleter;int main()
{cout << "main开始" << endl;thread t1([] {Singleton *pInst1 = Singleton::GetInstance();});thread t2([] {Singleton *pInst2 = Singleton::GetInstance();});t1.join();t2.join();cout << "main结束" << endl;return 0;
}

输出结果

Singleton: call Constructor
main开始
main结束
删除器启动
Singleton: call DestructorProcess returned 0 (0x0)   execution time : 0.254 s
Press any key to continue.

从输出结果可以看出来单例类对象在程序运行结束时正常被释放。

2、懒汉式

2.1、基础版本

在使用类对象(单例实例)时才会去创建,实现如下:

#include <iostream>
#include <string>
#include <mutex>
#include <memory>
#include <thread>
using namespace std;// 单例类
class Singleton
{
public:static Singleton* GetInstance() {if (m_pInst == nullptr) {m_pInst = new Singleton;}return m_pInst;}private:// 私有构造函数Singleton() { cout << "构造函数启动。" << endl; };// 私有析构函数~Singleton() { cout << "析构函数启动。" << endl; };private:static Singleton* m_pInst;
};// 初始化
Singleton* Singleton::m_pInst = nullptr;int main()
{cout << "main开始" << endl;thread t1([] {Singleton *pInst1 = Singleton::GetInstance();});thread t2([] {Singleton *pInst2 = Singleton::GetInstance();});t1.join();t2.join();cout << "main结束" << endl;return 0;
}

上面的懒汉式存在两方面问题,一是:多线程场景存在并发问题;二是:创建的单例对象在使用完成后不会被释放存在资源泄露问题。

2.2、双重检查

使用双重检查解决多线程并发问题,核心代码如下:

static Singleton* GetInstance() {if (m_pInst == nullptr) {// 双重检查lock_guard<mutex> l(m_mutex);if (m_pInst == nullptr) {m_pInst = new Singleton();}}return m_pInst;
}

双重检查能解决多线程并发问题,同时效率也比单检查要高,调用GetInstance时只有当单例对象没有被创建时才会加锁,下面是单检查的实现,通过对比即可发现双检查的优点,如下:

static Singleton* GetInstance() {lock_guard<mutex> l(m_mutex);if (m_pInst == nullptr) {m_pInst = new Singleton();}return m_pInst;
}

2.3、基于静态局部对象的实现

C++11后,规定了局部静态对象在多线程场景下的初始化行为,只有在首次访问时才会创建实例,后续不再创建而是获取。若未创建成功,其他的线程在进行到这步时会自动等待。注意:C++11前的版本不是这样的。因为有上述的改动,所以出现了一种更简洁方便优雅的实现方法,基于局部静态对象实现,如下:

#include <iostream>
#include <string>
#include <mutex>
#include <memory>
#include <thread>
using namespace std;// 单例类
class Singleton
{
public:static Singleton* GetInstance() {static Singleton instance;return &instance;}private:// 私有构造函数Singleton() { cout << "构造函数启动。" << endl; };// 私有析构函数~Singleton() { cout << "析构函数启动。" << endl; };
};int main()
{cout << "main开始" << endl;thread t1([] {Singleton *pInst1 = Singleton::GetInstance();});thread t2([] {Singleton *pInst2 = Singleton::GetInstance();});t1.join();t2.join();cout << "main结束" << endl;return 0;
}

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/231423.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

leecode题解Golang版本-3-无重复字符最长子串

题目 无重复字符最长子串 给定一个字符串 s &#xff0c;请你找出其中不含有重复字符的 最长子串 的长度。 题解 func lengthOfLongestSubstring(s string) int {m : make(map[uint8]int)res : 0for l, r : 0, 0; r < len(s); r {m[s[r]]if v, ok : m[s[r]]; !ok || v 1…

速盾网络:业务卓越,数字安全的领先者

在数字时代的浪潮中&#xff0c;业务成功需要强大的数字基石。速盾网络以其出色的CDN加速、高防IP、SDK游戏盾和抗DDoS攻击等业务&#xff0c;成为业界领先的数字安全保障者&#xff0c;为您的业务提供全方位的支持与保护。 CDN加速&#xff1a;业务飞跃的翅膀 速盾网络以全球…

设计模式详解---模板方法模式

1. 模板方式概念 当需要定义一个算法的框架&#xff0c;但允许具体步骤在子类中灵活实现时&#xff0c;可以使用模板方法&#xff08;Template Method&#xff09;设计模式。该模式通过定义一个模板方法以及一组抽象方法&#xff0c;将算法的结构固定&#xff0c;但具体实现延…

算法基础课-基础算法-二分查找-数的范围

lmid 需要补上加一 rmid 不需要补上加一 789. 数的范围 题目 提交记录 讨论 题解 视频讲解 给定一个按照升序排列的长度为 n&#xfffd; 的整数数组&#xff0c;以及 q&#xfffd; 个查询。 对于每个查询&#xff0c;返回一个元素 k&#xfffd; 的起始位置和终止位…

智能优化算法应用:基于世界杯算法3D无线传感器网络(WSN)覆盖优化 - 附代码

智能优化算法应用&#xff1a;基于世界杯算法3D无线传感器网络(WSN)覆盖优化 - 附代码 文章目录 智能优化算法应用&#xff1a;基于世界杯算法3D无线传感器网络(WSN)覆盖优化 - 附代码1.无线传感网络节点模型2.覆盖数学模型及分析3.世界杯算法4.实验参数设定5.算法结果6.参考文…

小程序自定义轮播图样式

小程序自定义轮播图样式以下是各案例&#xff0c;仅供大家参考。 效果展示&#xff1a; index.wxml代码&#xff1a; <view><!-- 轮播 --><view><swiper indicator-dots"{{indicatorDots}}"autoplay"{{autoplay}}" interval"{{…

数据可视化的魅力你了解吗?

你真的了解数据可视化吗&#xff1f;它所具备的真正魅力可能远远超出我们想象。数据可视化扩展了我们对数字和信息的简单理解&#xff0c;为我们揭示了一个无限可能的世界。今天我就以可视化行业的多年工作经验出发&#xff0c;和大家简单聊聊数据可视化的魅力。 数据的故事化…

SAP ABAP EXCEL 下载模板并导入

具体参考&#xff1a; ABAP EXCEL 下载摸板 获取数据模板文件路径 FORM fm_get_filepath .DATA: lv_filename TYPE string,lv_path TYPE string,lv_fullpath TYPE string,lv_title TYPE string.co_objid ZMMRP002.CONCATENATE co_objid - sy-datum sy-uzeit INTO l…

Flink系列之:Table API Connectors之Raw Format

Flink系列之&#xff1a;Table API Connectors之Raw Format 一、Raw Format二、示例三、Format 参数四、数据类型映射 一、Raw Format Raw format 允许读写原始&#xff08;基于字节&#xff09;值作为单个列。注意: 这种格式将 null 值编码成 byte[] 类型的 null。这样在 ups…

STM32——时钟树与滴答计时器

STM32——时钟树与滴答计时器 使用的开发板为stm32F407VET6的芯片,主要介绍stm32的时钟树与滴答计时器的一些理论和一个自己编写的delay函数。 时钟树的结构图可以在STM32F4xx中文参考手册.pdf中的时钟这块找到。而滴答计时器是内核资源&#xff0c;需要到Cortex M3与M4权威指南…

【VScode】设置语言为中文

1、下载安装好vscode 2、此时可看到页面为英文&#xff0c;为方便使用可切换为中文 3、键盘按下 ctrlshiftP 4、在输入框内输入configure display language 5、选择中文&#xff0c;restart即可&#xff08;首次会有install安装过程&#xff0c;等待安装成功后重启即可&am…

CMPXCHG和lwarx (LL)/stwcx (SC)

CMPXCHG 指令和 lwarx/stwcx&#xff08;LL/SC&#xff09;指令是在不同体系结构中常见的原子操作指令。 CMPXCHG: CMPXCHG 是 x86 架构中用于执行原子比较并交换操作的指令。这个指令会比较某个内存位置的值与累加器中的值&#xff0c;如果相等&#xff0c;则将累加器中的值赋…

算法设计与分析2023秋-头歌客观题-张超(云南农业大学)

文章目录 第一章客观题练习关于算法描述正确的是&#xff08; &#xff09;算法的要素包括&#xff08; &#xff09;分析算法&#xff0c;最重要的是衡量算法哪两个方面的效率&#xff08; &#xff09;算法的表示方法有&#xff08; &#xff09; 第二章客观题练习关于算法分…

nodejs+vue+微信小程序+python+PHP国漫推荐系统-计算机毕业设计推荐

使得本系统的设计实现具有可使用的价。做出一个实用性好的国漫推荐系统&#xff0c;使其能满足用户的需求&#xff0c;并可以让用户更方便快捷地国漫推荐。这个系统的设计主要包括系统页面的设计和方便用户互动的后端数据库&#xff0c;在开发后需要良好的数据处理能力、友好的…

git push提交出现Everything up-to-date提示问题

以前通过git提交代码到GitHub上的个人main分支时&#xff0c;曾出现过这样一个很低级的错误—— 出现这个错误原因&#xff0c;其实就是没有正确执行指令造成的&#xff0c;也就是没有正常提交数据。 一般按照以下命令提交&#xff0c;基本就没什么问题了—— git add . #添…

5路开关量转继电器 Modbus TCP远程I/O模块 YL95 RJ-45网络接口通信

特点&#xff1a; ● 五路开关量输入&#xff0c;五路继电器输出 ● 支持Modbus TCP 通讯协议 ● 内置网页功能&#xff0c;可以通过网页查询电平状态 ● 可以通过网页设定继电器输出状态 ● DI信号输入&#xff0c;DO输出及电源之间互相隔离 ● 宽电源供电范围&#x…

面试题,手写soft_nms

目录 有原理步骤&#xff1a; 加注释版&#xff1a; soft_nms的优点 有原理步骤&#xff1a; soft-nms详解_笔记大全_设计学院 Soft-nms的实现过程可以分为几个步骤&#xff1a; 1. 输入预测框 输入神经网络预测输出的所有框&#xff0c;每个框有四个坐标和一个类别得分…

选择排序、快速排序和插入排序

1. 选择排序 xuanze_sort.c #include<stdio.h> #include<stdlib.h>//选择排序void xuanze_sort(int arr[],int sz){//正着for(int i0;i<sz;i){//外层循环从第一个数据开始依次作为基准数据for(int j i1;j<sz;j){//int j i1 因为第一个数据作为了基准数据&…

本地缓存与多级缓存

一、前言 缓存对于一个高并发场景下的微服务应用来说具有重要的作用&#xff0c;不管是在架构选型还是设计阶段&#xff0c;缓存都是应用扛高并发提升吞吐量的有效手段。缓存对于大多数开发的同学来说并不陌生&#xff0c;一个基本的缓存使用流程如下&#xff1a; 简而言之&am…

Hugging Face实战-系列教程20:文本摘要建模实战2 之 Tokenizer处理

&#x1f6a9;&#x1f6a9;&#x1f6a9;Hugging Face 实战系列 总目录 有任何问题欢迎在下面留言 本篇文章的代码运行界面均在Jupyter Notebook中进行 本篇文章配套的代码资源已经上传 文本摘要建模实战1 之 数据清洗 文本摘要建模实战2 之 Tokenizer处理 3 Tokenizer处理 …