YOLOv5改进 | 2023 | CARAFE提高精度的上采样方法(助力细节长点)

一、本文介绍

本文给大家带来的CARAFE(Content-Aware ReAssembly of FEatures)是一种用于增强卷积神经网络特征图的上采样方法。其主要旨在改进传统的上采样方法就是我们的Upsample的性能。CARAFE的核心思想是:使用输入特征本身的内容来指导上采样过程,从而实现更精准和高效的特征重建。CARAFE是一种即插即用的上采样机制其本身并没有任何的使用限制所以在YOLOv5的改进中其也可以做到一个提高精度的改进方法 

 专栏回顾:YOLOv5改进专栏——持续复现各种顶会内容——内含100+创新

实验效果图如下所示-> 

目录

一、本文介绍

二、CARAFE的机制原理 

2.1 CARAFE的基本原理

2.2 图解CARAFE原理 

2.3 CARAFE的效果图 

三、CARAFE的复现源码

四、手把手教你添加CARAFE机制 

4.1 细节修改教程

4.1.1 修改一

​4.1.2 修改二

4.1.3 修改三 

4.1.4 修改四

4.2 CARAFE的yaml文件

4.3 CARAFE运行成功截图

五、本文总结 


二、CARAFE的机制原理 

 

论文地址:官方论文地址点击即可跳转

代码地址:官方代码地址点击即可跳转

2.1 CARAFE的基本原理

CARAFE(Content-Aware ReAssembly of FEatures)是一种用于增强卷积神经网络特征图的上采样方法。这种方法首次在论文《CARAFE: Content-Aware ReAssembly of FEatures》中提出,旨在改进传统的上采样方法(如双线性插值和转置卷积)的性能。

CARAFE通过在每个位置利用底层内容信息来预测重组核,并在预定义的附近区域内重组特征。由于内容信息的引入,CARAFE可以在不同位置使用自适应和优化的重组核,从而比主流的上采样操作符(如插值或反卷积)表现更好。

CARAFE包括两个步骤首先预测每个目标位置的重组核,然后用预测的核重组特征。给定一个尺寸为 H×W×C 的特征图和一个上采样比率 U,CARAFE将产生一个新的尺寸为 UH×UW×C 的特征图。其次CARAFE的核预测模块根据输入特征的内容生成位置特定的核,然后内容感知重组模块使用这些核来重组特征。

CARAFE可以无缝集成到需要上采样操作的现有框架中。在主流的密集预测任务中,CARAFE对高级和低级任务(如对象检测、实例分割、语义分割和图像修复)都有益处,且额外的参数微不足道。

2.2 图解CARAFE原理 

下图是CARAFE工作机制的示意图。左侧展示了来自Mask R-CNN的多层FPN(特征金字塔网络)特征(直至虚线左侧),右侧展示了集成了CARAFE的Mask R-CNN(直至虚线右侧)。对于采样的位置,该图显示了FPN自上而下路径中累积重组的区域。这样一个区域内的信息被重组到相应的重组中心。 

下图展示了CARAFE的整体框架。CARAFE由两个关键部分组成,即核预测模块和内容感知重组模块。在这个框架中,一个尺寸为 H×W×C 的特征图被上采样因子 U(=2) 倍。 

下图展示了集成了CARAFE的特征金字塔网络(FPN)架构。在这个架构中,CARAFE在FPN的自上而下路径中将特征图的尺寸上采样2倍。CARAFE通过无缝替换最近邻插值而整合到FPN中,从而优化了特征上采样的过程。

2.3 CARAFE的效果图 

下图比较了COCO 2017验证集上基线(上面)和CARAFE(下面)在实例分割结果方面的差异。 

总结:我个人觉得其实其效果提升比较一般甚至某些数据集上提点很微弱,但是它主要的作用是减少计算量是一个更加轻量化的上采样方法。 

三、CARAFE的复现源码

我们将在“ultralytics/nn/modules”目录下面创建一个文件将其复制进去,使用方法在后面会讲。

import torch
import torch.nn as nn
from ultralytics.nn.modules import Convclass CARAFE(nn.Module):def __init__(self, c, k_enc=3, k_up=5, c_mid=64, scale=2):""" The unofficial implementation of the CARAFE module.The details are in "https://arxiv.org/abs/1905.02188".Args:c: The channel number of the input and the output.c_mid: The channel number after compression.scale: The expected upsample scale.k_up: The size of the reassembly kernel.k_enc: The kernel size of the encoder.Returns:X: The upsampled feature map."""super(CARAFE, self).__init__()self.scale = scaleself.comp = Conv(c, c_mid)self.enc = Conv(c_mid, (scale * k_up) ** 2, k=k_enc, act=False)self.pix_shf = nn.PixelShuffle(scale)self.upsmp = nn.Upsample(scale_factor=scale, mode='nearest')self.unfold = nn.Unfold(kernel_size=k_up, dilation=scale,padding=k_up // 2 * scale)def forward(self, X):b, c, h, w = X.size()h_, w_ = h * self.scale, w * self.scaleW = self.comp(X)  # b * m * h * wW = self.enc(W)  # b * 100 * h * wW = self.pix_shf(W)  # b * 25 * h_ * w_W = torch.softmax(W, dim=1)  # b * 25 * h_ * w_X = self.upsmp(X)  # b * c * h_ * w_X = self.unfold(X)  # b * 25c * h_ * w_X = X.view(b, c, -1, h_, w_)  # b * 25 * c * h_ * w_X = torch.einsum('bkhw,bckhw->bchw', [W, X])  # b * c * h_ * w_return X

四、手把手教你添加CARAFE机制 

4.1 细节修改教程

4.1.1 修改一

我们找到如下的目录'yolov5-master/models'在这个目录下创建一整个文件目录(注意是目录,因为我这个专栏会出很多的更新,这里用一种一劳永逸的方法)文件目录起名modules,然后在下面新建一个文件,将我们的代码复制粘贴进去。


​4.1.2 修改二

然后新建一个__init__.py文件,然后我们在里面添加一行代码。注意标记一个'.'其作用是标记当前目录。

​​


4.1.3 修改三 

然后我们找到如下文件''models/yolo.py''在开头的地方导入我们的模块按照如下修改->

(如果你看了我多个改进机制此处只需要添加一个即可,无需重复添加。)

​​​


4.1.4 修改四

然后我们找到parse_model方法,按照如下修改->

到此就修改完成了,复制下面的ymal文件即可运行。


4.2 CARAFE的yaml文件

# YOLOv5 🚀 by Ultralytics, AGPL-3.0 license# Parameters
nc: 80  # number of classes
depth_multiple: 0.33  # model depth multiple
width_multiple: 0.25  # layer channel multiple
anchors:- [10,13, 16,30, 33,23]  # P3/8- [30,61, 62,45, 59,119]  # P4/16- [116,90, 156,198, 373,326]  # P5/32# YOLOv5 v6.0 backbone
backbone:# [from, number, module, args][[-1, 1, Conv, [64, 6, 2, 2]],  # 0-P1/2[-1, 1, Conv, [128, 3, 2]],  # 1-P2/4[-1, 3, C3, [128]],[-1, 1, Conv, [256, 3, 2]],  # 3-P3/8[-1, 6, C3, [256]],[-1, 1, Conv, [512, 3, 2]],  # 5-P4/16[-1, 9, C3, [512]],[-1, 1, Conv, [1024, 3, 2]],  # 7-P5/32[-1, 3, C3, [1024]],[-1, 1, SPPF, [1024, 5]],  # 9]# YOLOv5 v6.0 head
head:[[-1, 1, Conv, [512, 1, 1]],[-1, 1, CARAFE, [None, 2, 'nearest']],[[-1, 6], 1, Concat, [1]],  # cat backbone P4[-1, 3, C3, [512, False]],  # 13[-1, 1, Conv, [256, 1, 1]],[-1, 1, CARAFE, [None, 2, 'nearest']],[[-1, 4], 1, Concat, [1]],  # cat backbone P3[-1, 3, C3, [256, False]],  # 17 (P3/8-small)[-1, 1, Conv, [256, 3, 2]],[[-1, 14], 1, Concat, [1]],  # cat head P4[-1, 3, C3, [512, False]],  # 20 (P4/16-medium)[-1, 1, Conv, [512, 3, 2]],[[-1, 10], 1, Concat, [1]],  # cat head P5[-1, 3, C3, [1024, False]],  # 23 (P5/32-large)[[17, 20, 23], 1, Detect, [nc, anchors]],  # Detect(P3, P4, P5)]

 

4.3 CARAFE运行成功截图

附上我的运行记录确保我的教程是可用的。 


五、本文总结 

到此本文的正式分享内容就结束了,在这里给大家推荐我的YOLOv5改进有效涨点专栏,本专栏目前为新开的平均质量分98分,后期我会根据各种最新的前沿顶会进行论文复现,也会对一些老的改进机制进行补充,目前本专栏免费阅读(暂时,大家尽早关注不迷路~),如果大家觉得本文帮助到你了,订阅本专栏,关注后续更多的更新~

专栏回顾:YOLOv5改进专栏——持续复现各种顶会内容——内含100+创新

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/229800.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

轻量封装WebGPU渲染系统示例<52>- Json数据描述材质、纹理等3D渲染场景信息

当前示例源码github地址: https://github.com/vilyLei/voxwebgpu/blob/feature/material/src/voxgpu/sample/DataDrivenScene3.ts 当前示例运行效果: ​​​​​​​ Json数据: {"renderer": {"mtplEnabled": true,"camera": {"eye&quo…

16、vue3(十六):数据大屏(一):尺寸适配,水球图,柱形图,饼状图、图例

目录 一、尺寸适配解决方案 1.vw和vh 2.scale 二、数据大屏顶部搭建 1.思路分析

lightdb mysql模式下的datediff

文章目录 背景MySQL行为LightDB MySQL兼容模式行为DATEDIFF 背景 在信创适配中,有从MySQL迁移过来的程序,其中程序涉及日期加减数字的场景和使用datediff函数的场景。因此在LightDB-X 23.4版本中,MySQL兼容模式下对日期加减数字做了支持&…

[原创][R语言]股票分析实战[2]:周级别涨幅趋势的相关性

[简介] 常用网名: 猪头三 出生日期: 1981.XX.XX QQ联系: 643439947 个人网站: 80x86汇编小站 https://www.x86asm.org 编程生涯: 2001年~至今[共22年] 职业生涯: 20年 开发语言: C/C、80x86ASM、PHP、Perl、Objective-C、Object Pascal、C#、Python 开发工具: Visual Studio、D…

频谱论文:面向频谱地图构建的频谱态势生成技术研究

#频谱# [1]李竟铭.面向频谱地图构建的频谱态势生成技术研究.2019.南京航空航天大学,MA thesis.doi:10.27239/d.cnki.gnhhu.2019.000556. (南京航空航天大学) 频谱地图是对无线电环境的抽象表达,它可以直观、多维度地展现频谱态势信息&…

RabbitMq交换机详解

目录 1.交换机类型2.Fanout交换机2.1.声明队列和交换机2.2.消息发送2.3.消息接收2.4.总结 3.Direct交换机3.1.声明队列和交换机3.2.消息接收3.3.消息发送3.4.总结 4.Topic交换机4.1.说明4.2.消息发送4.3.消息接收4.4.总结 5.Headers交换机5.1.说明5.2.消息发送5.3.消息接收5.4.…

React 实现列表页和列表详情页功能

1.简介 本篇文章将会基于react 实现列表页和列表详情的功能,后续会完善更多的功能细节。 2.实现 a.app.js 入口类,实现路由功能 import ./App.css; import {BrowserRouter, Route, Routes} from react-router-dom; import {UserList} from "./p…

python渗透测试入门——流量嗅探器

1.代码及代码讲解。 代码编写工具:VsCode (1)socket嗅探器 首先第一个脚本是最简单的原始socket嗅探器,它只会读一个数据包,然后直接退出: import socket import os#host to listen on HOST #这里输入…

Redis Cluster集群搭建 三主三从

Redis包下载 Linux: http://download.redis.io/releases/ Mac or Windows: https://redis.io/download/ 2.下载后解压进入文件夹(本次我的Redis版本是6.2.14版本) /redis/redis-6.2.14 开始安装 make instarll修改配置文件复制redis.conf 6…

Mysql适用Sql语句对数据库表的字段进行增加、删除和修改等一系列操作

对表字段进行增加:需要指定操作的表名,新增字段的字段名以及字段数据类型。 alter table TableName add column FieldName FieldType 对表字段进行删除:需要指定操作的表名,想要删除的字段名。 alter table TableName drop FieldN…

STM32F103RCT6开发板M3单片机教程04--按键检测

原画图讲解 本教程使用是(光明谷SUN_STM32mini开发板) 首先了硬件连接原理,STM32F103RCT6开发板是mini最小系统板,板子在没并有按键。需要自行用面包板搭建。 硬件连接: PC10 -> KEY1 (MCU内部上拉…

【PostgreSQL】从零开始:(十一)PostgreSQL-Dropdb命令删除数据库

dropdb命令删除数据库 命令 [postgrespostgre-sql bin]$ dropdb --help dropdb removes a PostgreSQL database.Usage:dropdb [OPTION]... DBNAMEOptions:-e, --echo show the commands being sent to the server-f, --force try to terminate …

mysql原理--InnoDB的表空间

1.概述 通过前边儿的内容大家知道, 表空间 是一个抽象的概念。 对于系统表空间来说,对应着文件系统中一个或多个实际文件;对于每个独立表空间来说,对应着文件系统中一个名为 表名.ibd 的实际文件。可以把表空间想象成被切分为许许…

C#基础知识 - 操作数与运算符篇2

C#基础知识 - 操作数与运算符篇 4.2 运算符4.2.1 按操作数个数分类4.2.2 按运算类型分类4.2.3 对运算符 、-- 的使用4.2.4 关系运算符&#xff1a;>、 < 、> 、<、 ! 、4.2.5 逻辑运算符&#xff1a;&& || ! ^ & |4.2.6 位运算符&#xff1a;~ 、^、 &…

neuq-acm预备队训练week 10周报

neuq-acm预备队训练week 10 P1525 [NOIP2010 提高组] 关押罪犯-CSDN博客 neuq-acm预备队训练week 10 P3386 【模板】二分图最大匹配-CSDN博客 neuq-acm预备队训练week 10 P1129 [ZJOI2007] 矩阵游戏-CSDN博客

2020-XNUCA babyv8

做的第一道存在指针压缩机制的V8题&#xff0c;通过小越界写修改length构造大越界读写&#xff0c;然后利用arraybuffer的backing store构造任意地址写&#xff0c;利用wasm rwx段地址的特点以及堆空间的分布&#xff0c;搜索到rwx段的具体地址&#xff0c;然后利用任意地址写将…

掌握分片上传:优化大文件传输的关键策略 【C++】【WinHttp】【curl】

目录 引言 第一部分&#xff1a;分片上传的基本概念 1. 分片上传以及它的工作原理 2. 为什么选择分片上传 第二部分&#xff1a;实现分片上传的关键步骤 1. 文件分片的方法&#xff0c;如何选择合适的分片大小 文件分片的基本步骤&#xff1a; 如何选择合适的分片大小&a…

Leetcode 2966. Divide Array Into Arrays With Max Difference

Leetcode 2966. Divide Array Into Arrays With Max Difference 1. 解题思路2. 代码实现 题目链接&#xff1a;2966. Divide Array Into Arrays With Max Difference 1. 解题思路 这一题思路上来说其实很简单&#xff0c;想清楚这个问题必然是有序排列之后三个三个组成一组即…

当OneNote不同步时,你需要做些什么让其恢复在线

OneNote笔记本无法同步的原因有很多。由于OneNote使用OneDrive将笔记本存储在云中,因此可能会出现互联网连接问题,与多人联机处理笔记本时会出现延迟,以及从不同设备处理同一笔记本时会发生延迟。以下是OneNote不同步时的操作。 注意:本文中的说明适用于OneNote for Windo…

急速上手搭建单节点 k8s集群实战

Minikube搭建 是一种轻量化的Kubernetes集群&#xff0c;是k8s社区为了帮助开发者和学习者能够更好学习和体验k8s功能而推出的&#xff0c;使用个人PC的虚拟化环境就快速构建启动单节点k8s机器准备&#xff1a;阿里云 CentOS 7.x &#xff0c;2核4g 安装 安装Docker # 1.先…