【深度学习目标检测】九、基于yolov5的安全帽识别(python,目标检测)

YOLOv5是目标检测领域一种非常优秀的模型,其具有以下几个优势:

1. 高精度:YOLOv5相比于其前身YOLOv4,在目标检测精度上有了显著的提升。YOLOv5使用了一系列的改进,如更深的网络结构、更多的特征层和更高分辨率的输入图像,以提升精度。

2. 高效性能:YOLOv5在目标检测任务中具有很高的处理速度和实时性。相比于其他目标检测模型,YOLOv5采用了更少的计算量和参数数量,因此它在目标检测任务中具有更快的推理速度。

3. 简单易用:YOLOv5是一个开源项目,源代码公开,并且提供了预训练的模型权重。这使得使用YOLOv5进行目标检测变得非常方便,无需从头开始训练模型,只需进行适当的微调即可。

4. 多平台适用:YOLOv5可以在多种平台上运行,包括PC端、嵌入式设备和移动设备等。这使得YOLOv5可以在各种场景下应用,如自动驾驶、智能安防、人脸识别等。

5. 多功能:YOLOv5可以检测和分类多个不同的目标类别,包括人、车辆、动物等。此外,YOLOv5还可以检测出目标的位置和大小,并提供相应的置信度。

总之,YOLOv5具有高精度、高效性能、简单易用、多平台适用和多功能等优势,使其成为目标检测领域中的一种前沿模型。
 

参考:【深度学习目标检测】五、基于深度学习的安全帽识别(python,目标检测)

本文介绍了基于Yolov5的安全帽检测模型,包括训练过程和数据准备过程,同时提供了推理的代码。对准备计算机视觉相关的毕业设计的同学有着一定的帮助。

原图:

检测结果如下:

一、安装YoloV5

yolov5和yolov8是同个团队开发的,官方文档:主页 - Ultralytics YOLOv8 文档

安装部分参考:官方安装教程

二、数据集准备

抽烟数据集共包含705个训练图片,78个验证图片,图片示例如下:

原数据集的格式为voc格式,来自aistudio平台,使用yolov8训练需要将voc格式转换为yolov8训练的格式,本文提供转换好的数据集连接(yolov5和yolov8格式一致):训练和验证图片、数据标签。

其中训练数据4000条,验证数据1000条,请将所有数据按照以下目录放置:

|-images|--|-train|--|-val|-labels|--|-train|--|-val

三、模型训练

1、数据集配置文件

在ultralytics/ultralytics/cfg/datasets目录下添加anquanmao.yaml,添加以下内容(path修改为自己的路径):

# Ultralytics YOLO 🚀, AGPL-3.0 license
# COCO 2017 dataset http://cocodataset.org by Microsoft
# Example usage: yolo train data=coco.yaml
# parent
# ├── ultralytics
# └── datasets
#     └── coco  ← downloads here (20.1 GB)# Train/val/test sets as 1) dir: path/to/imgs, 2) file: path/to/imgs.txt, or 3) list: [path/to/imgs1, path/to/imgs2, ..]
path: datasets/helmet/HelmetDetection-yolov8  #改成你的数据集路径,建议使用绝对路径
train: images/train 
val: images/val  
test: images/val # Classes
names:# 0: normal0: helmet1: head2: person

2、修改模型配置文件

在ultralytics/ultralytics/cfg/models/v5目录下添加yolov5_helmet.yaml,添加以下内容:

# Ultralytics YOLO 🚀, AGPL-3.0 license
# YOLOv5 object detection model with P3-P5 outputs. For details see https://docs.ultralytics.com/models/yolov5# Parameters
nc: 3  # number of classes
scales: # model compound scaling constants, i.e. 'model=yolov5n.yaml' will call yolov5.yaml with scale 'n'# [depth, width, max_channels]n: [0.33, 0.25, 1024]s: [0.33, 0.50, 1024]m: [0.67, 0.75, 1024]l: [1.00, 1.00, 1024]x: [1.33, 1.25, 1024]# YOLOv5 v6.0 backbone
backbone:# [from, number, module, args][[-1, 1, Conv, [64, 6, 2, 2]],  # 0-P1/2[-1, 1, Conv, [128, 3, 2]],  # 1-P2/4[-1, 3, C3, [128]],[-1, 1, Conv, [256, 3, 2]],  # 3-P3/8[-1, 6, C3, [256]],[-1, 1, Conv, [512, 3, 2]],  # 5-P4/16[-1, 9, C3, [512]],[-1, 1, Conv, [1024, 3, 2]],  # 7-P5/32[-1, 3, C3, [1024]],[-1, 1, SPPF, [1024, 5]],  # 9]# YOLOv5 v6.0 head
head:[[-1, 1, Conv, [512, 1, 1]],[-1, 1, nn.Upsample, [None, 2, 'nearest']],[[-1, 6], 1, Concat, [1]],  # cat backbone P4[-1, 3, C3, [512, False]],  # 13[-1, 1, Conv, [256, 1, 1]],[-1, 1, nn.Upsample, [None, 2, 'nearest']],[[-1, 4], 1, Concat, [1]],  # cat backbone P3[-1, 3, C3, [256, False]],  # 17 (P3/8-small)[-1, 1, Conv, [256, 3, 2]],[[-1, 14], 1, Concat, [1]],  # cat head P4[-1, 3, C3, [512, False]],  # 20 (P4/16-medium)[-1, 1, Conv, [512, 3, 2]],[[-1, 10], 1, Concat, [1]],  # cat head P5[-1, 3, C3, [1024, False]],  # 23 (P5/32-large)[[17, 20, 23], 1, Detect, [nc]],  # Detect(P3, P4, P5)]

3、训练模型

使用如下命令训练模型,相关路径更改为自己的路径,建议绝对路径:

yolo detect train project=deploy name=yolov5_helmet exist_ok=False optimizer=auto val=True amp=True epochs=100  imgsz=640 model=ultralytics/ultralytics/cfg/models/v5/yolov5_helmet.yaml  data=ultralytics/ultralytics/cfg/datasets/anquanmao.yaml

4、验证模型

使用如下命令验证模型,相关路径根据需要修改:

yolo detect val imgsz=640 model=deploy/yolov5_helmet/weights/best.pt data=ultralytics/ultralytics/cfg/datasets/anquanmao.yaml

精度如下:

四、推理

训练好了模型,可以使用如下代码实现推理,将权重放到同级目录:

from PIL import Image
from ultralytics import YOLO# 加载预训练的YOLOv8n模型
model = YOLO('best.pt')# 在'bus.jpg'上运行推理
image_path = 'hard_hat_workers434.png'
results = model(image_path)  # 结果列表# 展示结果
for r in results:im_array = r.plot()  # 绘制包含预测结果的BGR numpy数组im = Image.fromarray(im_array[..., ::-1])  # RGB PIL图像im.show()  # 显示图像im.save('results.jpg')  # 保存图像

五、相关资料下载

您可以在推理代码下载本文训练好的权重和推理代码。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/229612.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

IDEA2023 + spring cloud 工程热部署设置方法

基于spring cloud 工程进行热部署 &#xff0c;实现每次修改工程源文件&#xff0c;后台自动启动&#xff0c;方便开发测试工作。具体分为5步骤即可&#xff1a; 1、修改工程的pom文件&#xff0c;增加adding devtools 工具包。 <dependency> <groupId>org.s…

js基础入门

先来一点js基础&#xff0c;其实js大部分的时候都在处理对象或者数组。 对象四个基本操作&#xff1a;增删改查 掌握元素的增删改查&#xff0c;了解如何拷贝&#xff0c;深拷贝和浅拷贝的区别。详情见代码 <script>//创建对象一共有三种赋值声明的语法let obj{} //赋值…

Vue 项目关于在生产环境下调试

前言 开发项目时&#xff0c;在本地调试没问题&#xff0c;但是部署到生产会遇到一些很奇怪的问题&#xff0c;本地又没法调&#xff0c;就需要在生产环境/域名下进行调试。 在这里介绍一个插件Vue force dev ,浏览器扩展里下载 即便是设置了Vue.config.devtoolsfalse 只要安…

认知能力测验,③如何破解语言常识类测试题?

作为认知能力测评中的一个环节&#xff0c;语言常识类&#xff0c;是大概率的出现&#xff0c;不同的用人单位可能略有不同&#xff0c;语言是一切的基础&#xff0c;而常识则意味着我们的知识面的宽度。 语言常识类的测试&#xff0c;如果要说技巧&#xff1f;难说....更多的…

maui sqlite开发一个商城加购物车的演示(3)

购物车界面及代码 <?xml version"1.0" encoding"utf-8" ?> <ContentPage xmlns"http://schemas.microsoft.com/dotnet/2021/maui"xmlns:x"http://schemas.microsoft.com/winfx/2009/xaml"xmlns:syncfusion"clr-namesp…

ArcMap自定义脚本工具箱迁移至ArcGIS pro

本文记录了将ArcMap10.7创建的自定义脚本工具箱&#xff08;.tbx&#xff09;迁移至ArcGIS pro的过程 ArcGIS Pro使用的是python版本与ArcMap不同&#xff0c;前者为python3&#xff0c;后者为python2。由于python3 和 python2 的部分语法不兼容&#xff0c;以及一些地理处理工…

87 GB 模型种子,GPT-4 缩小版,超越ChatGPT3.5,多平台在线体验

瞬间爆火的Mixtral 8x7B 大家好&#xff0c;我是老章 最近风头最盛的大模型当属Mistral AI 发布的Mixtral 8x7B了&#xff0c;火爆程度压过Google的Gemini。 缘起是MistralAI二话不说&#xff0c;直接在其推特账号上甩出了一个87GB的种子 随后Mixtral公布了模型的一些细节&am…

vue3的大致使用

<template><div class"login_wrap"><div class"form_wrap"> <!-- 账号输入--> <el-form ref"formRef" :model"user" class"demo-dynamic" > <!--prop要跟属性名称对应-->…

磁力计LIS2MDL开发(3)----九轴姿态解算

磁力计LIS2MDL开发.3--九轴姿态解算 概述视频教学样品申请完整代码下载使用硬件欧拉角万向节死锁四元数法姿态解算双环PI控制器偏航角陀螺仪解析代码 概述 LIS2MDL 包含三轴磁力计。 lsm6ds3trc包含三轴陀螺仪与三轴加速度计。 姿态有多种数学表示方式&#xff0c;常见的是四元…

服务器RAID配置及功能介绍

服务器RAID配置及功能介绍 一、RAID磁盘阵列详解1.RAID磁盘阵列介绍2.RAID 03.RAID14.RAID35.RAID56.RAID67.RAID 10总结阵列卡介绍 一、RAID磁盘阵列详解 1.RAID磁盘阵列介绍 ①是Redundant Array of lndependent Disks的缩写中文简称为独立冗余磁盘阵列。 ②把多块独立的物…

NBA得分数据可视化

简介 这是上学期的一些课外活动内容&#xff0c;将 NBA 得分数据进行可视化&#xff0c;并进行后续的探索性分析和建模&#xff08;本文未介绍&#xff09;。主要研究动机来源于这篇论文&#xff1a; 该论文使用二元的伽马过程来刻画 NBA 主客场得分数据&#xff0c;并且考虑了…

5.5 Linux Apache服务

1、概念介绍 a. Web 服务简介 WEB服务器也称为WWW(WORLD WIDE WEB&#xff0c;万维网)服务器&#xff0c;主要功能是提供网上信息浏览服务。 常用web服务器&#xff1a;httpd&#xff08;apache&#xff09;、nginx、tomcat、IIS 客户端&#xff1a;IE、firefox、chrome b…

高通平台开发系列讲解(AI篇)SNPE工作流程介绍

文章目录 一、转换网络模型二、量化2.1、选择量化或非量化模型2.2、使用离线TensorFlow或Caffe模型2.3、使用非量化DLC初始化SNPE2.4、使用量化DLC初始化SNPE三、准备输入数据四、运行加载网络沉淀、分享、成长,让自己和他人都能有所收获!😄 📢本篇章主要介绍SNPE模型工作…

学习Java第70天,过滤器Filter简介

过滤器概述 Filter,即过滤器,是JAVAEE技术规范之一,作用目标资源的请求进行过滤的一套技术规范,是Java Web项目中最为实用的技术之一 Filter接口定义了过滤器的开发规范,所有的过滤器都要实现该接口 Filter的工作位置是项目中所有目标资源之前,容器在创建HttpServletRequest和…

【C++】POCO学习总结(十八):XML

【C】郭老二博文之&#xff1a;C目录 1、XML文件格式简介 1&#xff09;XML文件的开头一般都有个声明&#xff0c;声明是可选 <&#xff1f;xml version"1.0" encoding"UTF-8"?>2&#xff09;根元素&#xff1a;XML文件最外层的元素 3&#xff…

java内置的数据结构

Java语言提供了许多内置的数据结构&#xff0c;包括&#xff1a; 1. 数组&#xff08;Array&#xff09;&#xff1a;数组是最基本的数据结构之一&#xff0c;它是一个有序的元素集合&#xff0c;每个元素都有一个对应的索引。在Java中&#xff0c;数组可以通过声明和初始化来创…

【从零开始学习--设计模式--策略模式】

返回首页 前言 感谢各位同学的关注与支持&#xff0c;我会一直更新此专题&#xff0c;竭尽所能整理出更为详细的内容分享给大家&#xff0c;但碍于时间及精力有限&#xff0c;代码分享较少&#xff0c;后续会把所有代码示例整理到github&#xff0c;敬请期待。 此章节介绍策…

每天五分钟计算机视觉:网络中的网络(NiN)

本文重点 前面的课程中我们学习了众多的经典网络模型&#xff0c;比如LeNet、AlexNet、VGG等等&#xff0c;这些网络模型都有共同的特点。 它们的特点是&#xff1a;先由卷积层构成的模块充分提取空间特征&#xff0c;然后再由全连接层构成的模块来输出分类结果。也就是说它们…

C练习题_3答案

一、单项选择题(本大题共20小题,每小题2分,共40分。在每小题给出的四个备选项中,选出一个正确的答案,并将所选项前的字母填写在答题纸的相应位置上。 以下正确的C语言自定义标识符是(A)A. la B. 2a C. do D. a.12 2.在C语言中,错误的常数表示是(D) A. OL B. 0x6aL C. ‘6’…