【动态规划精选题目】2、路径问题模型

此动态规划系列主要讲解大约10个系列【后续持续更新】

本篇讲解路径问题模型中的6道经典题,会在讲解题目同时给出AC代码

目录

 1、不同路径

2、不同路径2

3、珠宝的最大价值

4、下降路径最小和

5、最小路径和

6、地下城游戏


 

 1、不同路径

class Solution {
public:int uniquePaths(int m, int n) {vector<vector<int>> dp(m + 1, vector<int> (n + 1));dp[0][1] = 1;//此位置的虚拟节点的初始化为1,方便后续计算for (int i = 1; i <= m; i++)//从上到下遍历每一行for (int j = 1; j <= n; j++)//从左到右填写每一行dp[i][j] = dp[i - 1][j] + dp[i][j - 1];return dp[m][n];}
};

2、不同路径2

class Solution {
public:int uniquePathsWithObstacles(vector<vector<int>>& ob) {int m = ob.size(), n = ob[0].size();vector<vector<int>> dp(m + 1, vector<int> (n + 1));dp[1][0] = 1;//虚拟节点设置为1for (int i = 1; i <= m; i++)for(int j = 1; j <= n; j++)if(ob[i - 1][j - 1] != 1)dp[i][j] = dp[i - 1][j] + dp[i][j - 1];return dp[m][n];}
};

3、珠宝的最大价值

 

class Solution {
public:int jewelleryValue(vector<vector<int>>& frame) {int m = frame.size(), n = frame[0].size();vector<vector<int>> dp(m + 1, vector<int>(n + 1));//会自动初始化为0for(int i = 1; i <= m; i++)for(int j = 1; j <= n; j++)dp[i][j] = max(dp[i - 1][j], dp[i][j - 1]) + frame[i - 1][j - 1];//因为设置虚拟节点,则frame[i-1][j-1],-1后拿到的才是原位置的价值return dp[m][n];}
};

4、下降路径最小和

class Solution {
public:int minFallingPathSum(vector<vector<int>>& matrix) {int n = matrix.size();//方阵vector<vector<int>> dp(n + 1, vector<int>(n + 2, INT_MAX));//INT_MAX表示一个 32 位符号整数所能够表示的最大值//初始化第一行for (int i = 0; i < n + 2; i++) dp[0][i] = 0;for (int i = 1; i <= n; i++)for (int j = 1; j <= n; j++)dp[i][j] = min(dp[i - 1][j - 1], min(dp[i - 1][j], dp[i - 1][j + 1]))+matrix[i - 1][j - 1];int minimum = INT_MAX;for (int i = 1; i <= n; i++)minimum = min(minimum, dp[n][i]);return minimum;}
};

5、最小路径和

 

class Solution {
public:int minPathSum(vector<vector<int>>& grid) {int m = grid.size(), n = grid[0].size();vector<vector<int>> dp(m + 1, vector<int>(n + 1, INT_MAX));dp[0][1] = dp[1][0] = 0;for (int i = 1; i <= m; i++)for (int j = 1; j <= n; j++)dp[i][j] = min(dp[i - 1][j], dp[i][j - 1]) + grid[i - 1][j - 1];return dp[m][n];}
};

6、地下城游戏

分析题目,模拟示例1:

 

2、状态转移方程 

怎样能从 ( i, j ) 位置正确进入到 ( i, j + 1 ) 位置呢?因为dp表里存的是从某个位置出发到终点时的最低血量. 故假设 ( i, j ) 位置此时最低初始血量为 X, 想要走出这个位置就需要先击败里面的恶魔 dungeon[i][j], 之后剩余血量 X + dungeon[i][j]【但也不排除dungeon[i][j]位置是血包,但不影响结果】 也就走出(i, j)位置后的血量必须>= ( i, j+1 ) 的最低初始血量 dp[i][j+1] 才能进入, 否则无法到达终点.当 X + dungeon[i][j] >= dp[i][j+1] 时才有机会到达终点. 题目要求最低初始血量, 取等时即可。

此时所需dp[i][j+1] - dungeon[i][j]

同理,从 ( i, j ) 位置到 ( i+1, j ) 位置后想要到达终点所需要的最低初始血量为

dp[i+1][j] - dungeon[i][j]

由于我们求的是从某点出发到终点的最低初始血量, 所以

状态转移方程:dp[i][j] = min(dp[i][j+1], dp[i+1][j] ) - dungeon[i][j]

注意:当 dungeon[i][j] 非常大时, dp[i][j] 最终会是一个< 0 的数。【但最低血量<=0都是会die的】

即( i, j ) 位置里面有个非常大的血包(dungeon[i][j]),此时从( i, j ) 位置走出去就是是负数了,可是按理说应该已经die了,不能走到下一位置了(dp[i][j+1],或dp[i+1][j])。那么这里就是没有考虑血包很大的问题,只是考虑了部分情况,按理说血包很大是可以走出去的,这是算是误判了,故必须保证在走出 ( i, j ) 位置后它的血量> 0。

因此最终需对dp[i][j]进行处理,dp[i][j] = max( 1, dp[i][j] 

class Solution {
public:int calculateMinimumHP(vector<vector<int>>& dungeon) {int m = dungeon.size(), n = dungeon[0].size();vector<vector<int>> dp(m + 1, vector<int>(n + 1, INT_MAX));dp[m][n - 1] = dp[m - 1][n] = 1;for (int i = m - 1; i >= 0; i--)for (int j = n - 1; j >= 0; j--){dp[i][j] = min(dp[i][j + 1], dp[i + 1][j]) - dungeon[i][j];dp[i][j] = max(1, dp[i][j]);}return dp[0][0];}
};

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/229427.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

基于VGG-16+Android+Python的智能车辆驾驶行为分析—深度学习算法应用(含全部工程源码)+数据集+模型(一)

目录 前言总体设计系统整体结构图系统流程图 运行环境Python环境TensorFlow 环境Pycharm 环境Android环境 相关其它博客工程源代码下载其它资料下载 前言 本项目采用VGG-16网络模型&#xff0c;使用Kaggle开源数据集&#xff0c;旨在提取图片中的用户特征&#xff0c;最终在移…

数据分析-14-基于Python的信用评分卡数据分析(包含代码数据)

文章目录 0. 数据代码下载1. 分析思路2. 理解数据3. 数据清洗3.1 选择子集3.2 列名重命名3.3 缺失数据处理3.4 异常值处理 4. 建立模型4.1 借款逾期超过90天的人数&#xff0c;即借款客户的整体质量情况&#xff1f;4.2 借款人月收入分布情况及月收入对违约客户数量的影响&…

低代码在制造业的应用前景

引言 数字化转型已经成为制造业的必然趋势&#xff0c;为了应对市场的快速变化、提高效率、降低成本&#xff0c;制造业企业不得不追求更智能、更敏捷的生产方式。在这一转型过程中&#xff0c;低代码技术崭露头角&#xff0c;成为了一种强大的工具&#xff0c;有望加速制造业…

PyCharm community 安装教程

目录 链接cudatoolkit 下载地址&#xff1a;https://www.jetbrains.com/pycharm/download/other.html 双击打开 安装路径&#xff0c;可自行更换到D盘 不导入设置 链接cudatoolkit

设计模式(2)--对象创建(5)--单件

1. 意图 保证一个类仅有一个实例&#xff0c;并提供一个访问它的全局访问点。 2. 一种角色 单件(Singleton) 3. 优点 3.1 对唯一实例的受控访问 3.2 缩小名空间(对全局变量的改进) 3.3 允许对操作和表示精化(可以有子类) 3.4 允许可变数目的实例 3.5 比类操作更灵活 4. 缺点…

【C语言】cache和程序访问的局部性对程序性能的影响

文章目录 1&#xff0e;源程序比较其性能影响2&#xff0e;内存分配&#xff08;1&#xff09;静态存储区&#xff08;static&#xff09;&#xff1a;&#xff08;2&#xff09;栈区&#xff08;stack&#xff09;&#xff1a;&#xff08;3&#xff09;堆区&#xff08;heap&…

msvcp140.dll丢失怎样修复?全面分析msvcp140.dll的修复方法

在执行特定程序时&#xff0c;有可能遭遇msvcp140.dll文件遗失的困扰&#xff0c;此时该如何处理呢&#xff1f;此次将为您讲述面临此类问题的有效解决方案&#xff0c;涉及到多种修复方法&#xff0c;其中包括利用DLL修复工具进行操作。您可依据个人需求选择相应的修复方式&am…

Linux:时间显示(函数介绍)

文章目录 1、sleep&#xff1a;延迟函数2、time/localtime3、示例&#xff1a;sleep time localtime4、Linux时间调整 1、sleep&#xff1a;延迟函数 函数原型&#xff1a;unsigned int sleep(unsigned int seconds); 功 能&#xff1a;延时 参 数&#xff1a;seconds:秒&am…

条款5:了解c++默默编写并调用了哪些函数

如果你不自己声明&#xff0c;编译器会替你声明&#xff08;编译器版本的&#xff09;拷贝构造函数、拷贝赋值运算符和析构函数。此外&#xff0c;如果你没有声明任何构造函数&#xff0c;编译器会为你声明一个默认构造函数。 class Empty{};本质上和写成下面这样是一样的: c…

cpp_03_引用_类型转换_温和强转_面向对象

1 引用的应用 1.1 数据传递--值传递 C语言只要涉及数据传递&#xff08;例如&#xff1a;初始化、赋值、传参、返回值&#xff09;&#xff0c; 都为值传递&#xff08;将数据复制一份给到目标内存&#xff09;。 // value.cpp 值传递&#xff1a;将数据复制一份给别人 #in…

Diva配置——Communication Tests

关联文章:CANoe.Diva生成测试用例 Diva目录 一、CANoe.Diva简介二、Communication Tests配置一、CANoe.Diva简介 CANoe.DiVa 是一种 CANoe 选项,用于对 ECU 中的诊断软件实施进行自动化测试。 可以通过CANdelaStudio制作的CDD或ODX文件,经过Diva配置自动生成测试用例和测试脚…

【日积月累】Mysql性能优化

目录 【日积月累】Mysql性能优化 1.前言2.MySql性能优化的主要方面2.1硬件和操作系统成面优化2.2架构设计层优化&#xff08;表结构&#xff09;2.3程序配置优化2.5表结构及索引优化2.4sql执行优化 3.总结4.参考 文章所属专区 积月累 1.前言 MySQL是一种常用的开源关系型数据…

ACL原理和配置

一.ACL概述 1.介绍 ACL 访问控制列表&#xff0c;可以通过对网络中报文流的精确识别&#xff0c;与其他技术结合&#xff0c;达到控制网络访问行为、防止网络攻击和提高网络带宽利用率的目的&#xff0c;从而切实保障网络环境的安全性和网络服务质量的可靠性。 2.概述 ACL是…

ShenYu网关注册中心之Zookeeper注册原理

文章目录 1、客户端注册流程1.1、读取配置1.1.1、用于注册的 ZookeeperClientRegisterRepository1.1.2、用于扫描构建 元数据 和 URI 的 SpringMvcClientEventListener 1.2、扫描注解&#xff0c;注册元数据和URI1.2.1、构建URI并写入Disruptor1.2.2、构建元数据并写入Disrupto…

[C语言]大小端及整形输出问题

假设在一个32位little endian 的机器上运行下面的程序&#xff0c;结果是多少 ? 1.1先看以下三个程序 #include <stdio.h> int main() {long long a 1, b 2, c 3;printf("%lld %lld %lld\n", a, b, c); // 1 2 3printf("%d %d %d %d %d %d\n&quo…

Learning Semantic-Aware Knowledge Guidance forLow-Light Image Enhancement

微光图像增强&#xff08;LLIE&#xff09;研究如何提高照明并生成正常光图像。现有的大多数方法都是通过全局和统一的方式来改善低光图像&#xff0c;而不考虑不同区域的语义信息。如果没有语义先验&#xff0c;网络可能很容易偏离区域的原始颜色。为了解决这个问题&#xff0…

c语言-全局变量与局部变量

目录 1、&#xff08;作用&#xff09;域的概念 2、全局与局部的相对性 3、生命周期 3、静态变量static 结语&#xff1a; 前言&#xff1a; 在c语言中&#xff0c;全局变量的可见范围是整个工程&#xff0c;而局部变量的可见范围从该变量被定义到该作用域结束&#xff0c…

【JavaEE】多线程(5) -- 阻塞队列

目录 1.阻塞队列是什么? 2.生产者消费者模型 3.标准库中的阻塞队列 4.阻塞队列的实现 1.阻塞队列是什么? 阻塞队列是⼀种特殊的队列. 也遵守 "先进先出" 的原则 阻塞队列能是⼀种线程安全的数据结构, 并且具有以下特性: 当队列满的时候, 继续⼊队列就会阻塞, …

I/O流的相关内容

首先我们了解一下什么是文件&#xff1a; 文件其实就是让我们用来保存数据的地方&#xff0c;它可以用来保存信息&#xff0c;图片&#xff0c;以及音频等各类数据。 文件流&#xff1a; 那我们是如何通过我们的程序来进行对文件的操作呢&#xff1f;这里我们就要提出一个概…

wpf将静态变量绑定到控件属性

有时候需要将后台一个静态属性绑定到xaml前台&#xff0c;经过实践&#xff0c;有如下两种绑定的方式 例如后台声明一个类&#xff0c;类中包含静态变量&#xff1a; using System; using System.Collections.Generic; using System.Linq; using System.Text; using System.T…