机器学习---概述(一)

文章目录

  • 1.人工智能、机器学习、深度学习
  • 2.机器学习的工作流程
      • 2.1 获取数据集
      • 2.2 数据基本处理
      • 2.3 特征工程
          • 2.3.1 特征提取
          • 2.3.2 特征预处理
          • 2.3.3 特征降维
      • 2.4 机器学习
      • 2.5 模型评估
  • 3.机器学习的算法分类
      • 3.1 监督学习
          • 3.1.1 回归问题
          • 3.1.2 分类问题
      • 3.2 无监督学习
      • 3.3 半监督学习
      • 3.4 强化学习
      • 3.5 总结

1.人工智能、机器学习、深度学习

在这里插入图片描述
从图中可以看到,人工智能、机器学习、深度学习之间的关系为:机器学习是人工智能的一个实现途径,而深度学习是机器学习的一个方法演变而来的

2.机器学习的工作流程

可以将机器学习的工作流程模拟成人思考解决问题的过程,人在遇到一个新的问题的时候,通常会根据以往对解决此类问题的经验来获取到一个规律,根据此规律来预测解决这种新的问题会成功还是失败。
而机器学习的工作流程与之较为相似,当遇到一批新的数据的时候,计算机会自动分析数据来获取模型,根据模型来预测或者评估数据。
在这里插入图片描述
机器学习的工作流程可以分为以下步骤:
1.获取数据
2.数据基本处理
3.特征工程
4.机器学习(模型训练)
5.模型评估

在这里插入图片描述
如果结果达到要求,上线服务
没有达到要求,就重复上述步骤

2.1 获取数据集

在这里插入图片描述
在数据集中,一行数据我们称为一个样本,一列数据我们成为一个特征
,有些数据有目标值(标签值),有些数据没有目标值(如上表中,电影类型就是这个数据集的目标值)

数据类型构成
1.特征值+目标值(目标值是连续的或者离散的)
2.只有特征值,没有目标值

数据分割:
机器学习一般会将数据分割为两个部分:
训练数据:用于训练和构建模型
测试数据:在模型检验的时候使用,用于评估模型是否有效
这两部分的划分比例一般为:
训练集70%-80% 测试集20%-30%

2.2 数据基本处理

即对数据进行缺失值、去除异常值等处理
缺失值是指粗糙数据中由于缺少信息而造成的数据的聚类、分组、删失或截断。它指的是现有数据集中某个或某些属性的值是不完全的

2.3 特征工程

特征工程指的是使用专业知识和技巧来处理数据,使得特征能在机器学习算法上发挥更好的作用的过程。
特征工程包含:特征提取、特征预处理、特征降维三部分

2.3.1 特征提取

即将任意数据转换为可用于机器学习的数字特征
在这里插入图片描述

2.3.2 特征预处理

通过一些转换函数将特征数据转换为更加适合机器学习算法的特征数据的过程。
在这里插入图片描述

2.3.3 特征降维

指的是在某些条件下,降低随机变量的特征的个数,得到一组“不相关”的主变量的个数。
在这里插入图片描述

2.4 机器学习

即选择适合的算法对模型进行训练

2.5 模型评估

对训练好的模型进行评估

3.机器学习的算法分类

在机器学习中,根据数据集的组成不同,可以将机器学习算法分为:
监督学习
无监督学习
半监督学习
强化学习

3.1 监督学习

在监督学习中,计算机通过示例学习。它从过去的数据中学习,并将学习的结果应用到当前的数据中,以预测未来的事件。在这种情况下,输入和期望的输出数据都有助于预测未来事件。
监督学习的定义为:
根据已有的数据集,知道输入和输出结果之间的关系。根据这种已知的关系,训练得到一个最优的模型。

也就是说,在监督学习中训练数据既有特征(feature)又有标签(label),通过训练,让机器可以自己找到特征和标签之间的联系,在面对只有特征没有标签的数据时,可以判断出标签。监督学习可以分为回归和分类两种

3.1.1 回归问题

例如:预测房价,根据样本集拟合出一条连续曲线
在这里插入图片描述
回归通俗一点就是,对已经存在的点(训练数据)进行分析,拟合出适当的函数模型y=f(x),这里y就是数据的标签,而对于一个新的自变量x,通过这个函数模型得到标签y。

3.1.2 分类问题

例如:根据肿瘤特征判断良性还是恶性,得到的是结果是“良性”或者“恶性”,是离散的。
在这里插入图片描述
所以简单来说分类就是,要通过分析输入的特征向量,对于一个新的向量得到其标签。
和回归最大的区别在于,分类是针对离散型的,输出的结果是有限的。
监督学习的应用:
医疗诊断和预测:监督学习在医疗领域中有着广泛的应用。例如,在医学影像诊断中,通过标记了疾病或异常的图像数据,可以训练模型来帮助医生自动识别和诊断病变。此外,监督学习还可以用于疾病预测,通过医学数据的训练,模型可以预测患者是否有可能患上某种疾病,帮助医生进行早期干预和预防。

3.2 无监督学习

不知道数据集中数据、特征之间的关系,而是要根据聚类或一定的模型得到数据之间的关系。可以这么说,比起监督学习,无监督学习更像是自学,让机器学会自己做事情,是没有标签(label)的。

输入数据是由输入特征值组成,没有目标值
输入数据没有被标记,也没有确定的结果。样本数据类别未知;
需要根据样本间的相似性对样本集进行类别划分。

在这里插入图片描述
无监督学习的应用:
Google新闻按照内容结构的不同分成财经,娱乐,体育等不同的标签,这就是无监督学习中的聚类。

在这里插入图片描述

3.3 半监督学习

半监督学习是一种特殊的机器学习方法,它试图充分利用有标签数据和无标签数据的优势。 在很多情况下,获取有标签数据可能非常昂贵或耗时,但我们可能能够获得大量的无标签数据。半监督学习的目标就是通过这些有限的有标签数据和大量的无标签数据来提高机器学习模型的性能。

这是一个生活中的类比:假设你正在学习认识动物,但你只有少数几本书上有动物的名字和图片。现在,你朋友给了你一大堆没有标签的动物图片。半监督学习的任务就是,通过这些有标签的书籍和无标签的图片,让你更好地辨认未见过的新动物。
在这里插入图片描述
在这里插入图片描述
**半监督学习的主要优点是能够在有限的有标签数据上构建更好的模型,从而节省数据标注的成本。**然而,它也可能面临一些挑战,例如无标签数据质量的问题,以及在某些情况下,过度依赖伪标签可能导致错误的预测。因此,在应用半监督学习时,需要谨慎选择合适的方法,并根据具体情况进行调整。

3.4 强化学习

强化学习就像是在教一只聪明的小宠物怎么玩游戏一样。你是这个小宠物的导师,它试图在一个陌生的游戏世界中获得最高的分数。但是,开始时,它对游戏一无所知,所以它必须通过尝试和错误来学习。

在强化学习中,有三个主要的角色:

智能体(Agent):就是我们的小宠物,它在游戏中行动,并试图通过选择不同的动作来达到最好的结果。
环境(Environment):就是游戏的世界,它会根据智能体的动作给予不同的反馈,比如给予奖励(reward)或者惩罚(penalty)。智能体的目标是通过与环境的交互来最大化总的奖励。
动作(Action):就是智能体在游戏中可以选择的不同的举动或策略。

整个过程就像是一个训练过程:智能体在游戏中进行动作,然后根据环境给予的奖励或惩罚来调整自己的策略。通过反复的试错和学习,它会逐渐学会什么样的动作可以得到更多的奖励,从而在游戏中表现得越来越好。

在这里插入图片描述

强化学习的一个典型例子就是训练一个机器人玩赛车游戏。机器人开始时可能会碰壁、撞车,但随着时间的推移,它会学会如何转弯、避开障碍物,并逐渐变得越来越擅长在赛道上驾驶。这种学习过程类似于我们学习新技能或游戏一样,通过不断尝试,我们变得越来越熟练。

总结一下,强化学习是一种让智能体通过与环境交互,并根据奖励和惩罚来学习优化策略的机器学习方法。类似于训练一只聪明的小宠物在陌生的游戏世界中变得越来越好。强化学习的目标就是获得最多的累计奖励。
在这里插入图片描述

3.5 总结

在这里插入图片描述

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/22922.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

前端(十一)——Vue vs. React:两大前端框架的深度对比与分析

😊博主:小猫娃来啦 😊文章核心:Vue vs. React:两大前端框架的深度对比与分析 文章目录 前言概述原理与设计思想算法生态系统与社区支持API与语法性能与优化开发体验与工程化对比总结结语 前言 在当今快速发展的前端领…

软件设计原则

文章目录 一、软件设计原则1. 开闭原则2. 里氏代换原则3. 依赖倒转原则4. 接口隔离原则5. 迪米特法则6. 合成复用原则 一、软件设计原则 在软件开发中,为了提高软件系统的可维护性和可复用性,增加软件的可扩展性和灵活性,程序员要尽量根据软件…

django使用mysql数据库

Django开 发操作数据库比使用pymysql操作更简单,内部提供了ORM框架。 下面是pymysql 和orm操作数据库的示意图,pymysql就是mysql的驱动,代码直接操作pymysql ,需要自己写增删改查的语句 django 就是也可以使用pymysql、mysqlclient作为驱动&a…

迁移学习:使用Restnet预训练模型构建高效的水果识别模型

目录 引言 1 迁移学习 1.1 什么是迁移学习 1.2 迁移学习能解决什么问题 1.3 迁移学习面临的三个问题 1.3.1 何时迁移 1.3.2 何处迁移 1.3.3 如何迁移 1.4 迁移学习的分类 1.4.1 按照学习方式的划分 1.4.2 按照使用方法的划分 2 Restnet网络 2.1 Restnet介绍 2.2 Re…

LangChain:打造自己的LLM应用 | 京东云技术团队

1、LangChain是什么 LangChain是一个框架,用于开发由LLM驱动的应用程序。可以简单认为是LLM领域的Spring,以及开源版的ChatGPT插件系统。核心的2个功能为: 1)可以将 LLM 模型与外部数据源进行连接。 2)允许与 LLM 模…

element-ui树形表格,左边勾选,右边显示选中的数据-功能(如动图)

功能如图 功能需求 表格树形表格勾选数据,右边显示对应勾选的数据内容,选中客户,自动勾选所有的店铺(子级),选中其中一个店铺,自动勾选上客户(父级),同时会存在只有客户(下面没有子级的情况&am…

Apache Flink概述

Flink 是构建在数据流之上的一款有状态的流计算框架,通常被人们称为第三代大数据分析方案 第一代大数据处理方案:基于Hadoop的MapReduce 静态批处理 | Storm 实时流计算 ,两套独立的计算引擎,难度大(2014年9月&#x…

Java版工程行业管理系统源码-专业的工程管理软件-em提供一站式服务 em

​ Java版工程项目管理系统 Spring CloudSpring BootMybatisVueElementUI前后端分离 功能清单如下: 首页 工作台:待办工作、消息通知、预警信息,点击可进入相应的列表 项目进度图表:选择(总体或单个)项目…

STM32存储左右互搏 I2C总线读写EEPROM ZD24C1MA

STM32存储左右互搏 I2C总线读写EEPROM ZD24C1MA 在较低容量存储领域,EEPROM是常用的存储介质,不同容量的EEPROM的地址对应位数不同,在发送字节的格式上有所区别。EEPROM是非快速访问存储,因为EEPROM按页进行组织,在连…

如何用 Java 获取 DOCX 文档的注释

现代文档协作工具有助于在比以往更紧迫的期限内从头到尾推动项目。前数字化项目协作依赖于手动标记和注释来在分发之前修改/改进关键报告和备忘录,而不同行业的当代团队可以使用可访问的简单修订工具来实现相同的基本目标,甚至更多。 DOCX 文件中的所有用…

拓扑排序--代码

模板 常用代码模板3——搜索与图论 - AcWing 拓扑排序 —— 模板题 AcWing 848. 有向图的拓扑序列 时间复杂度 O(nm), n 表示点数&#xff0c;m 表示边数 bool topsort() {int hh 0, tt -1;// d[i] 存储点i的入度for (int i 1; i < n; i )if (!d[i])q[ tt] i;while…

caj文件怎么转换成pdf?了解一下这种方法

caj文件怎么转换成pdf&#xff1f;如果你曾经遇到过需要将CAJ文件转换成PDF格式的情况&#xff0c;那么你一定知道这是一件麻烦的事情。幸运的是&#xff0c;现在有许多软件和工具可以帮助你完成这项任务。下面就给大家介绍一款使用工具。 【迅捷PDF转换器】是一款功能强大的工…

数据结构----c语言复习

数据结构----c语言复习 一.类型 1.类型的种类 char 1个字节 范围-128~127 short 2个字节 范围-32768~32767 int 4个字节 范围-2147483648~2147483647 long 4个字节 范围-2147483648~2147483647 float 4个字节 有效位为6~7位 float 8个字节 有效位为15~16为 unsigned c…

基于数据库 Sqlite3 的 root 管理系统

1.服务器 1.1服务器函数入口 #include "server.h"int main(int argc, char const *argv[]) {char buf[128] {0};char buf_ID[256] {0};// 接收报错信息判断sqlite3 *db;// 创建员工信息的表格,存在则打开db Sqlite_Create();if (db NULL){printf("sqlite_…

启动RocketMQ报错

说明&#xff1a;启动RocketMQ消费者时&#xff0c;报以下错误&#xff1a;java.lang.IllegalStateException&#xff1a;Failed to start RocketMQ push consumer. 解决&#xff1a;看下所有的监听器类&#xff0c;检查是不是有相同的消费者组名&#xff0c;注释掉其中一个即可…

BI技巧丨利用OFFSET计算同环比

微软最近更新了很多开窗函数&#xff0c;其内部参数对比以往的DAX函数来说&#xff0c;多了很多&#xff0c;这就导致学习的时间成本直线上升。 而且对于新增函数的应用场景&#xff0c;很多小伙伴也是一知半解的&#xff0c;本期我们就来聊一聊关于最近新增的开窗函数——OFF…

Docker网络模型使用详解(2)Docker网络模式

安装Docker时会自动创建3个网络&#xff0c;可以使用docker network ls命令列出这些网络。 [rootlocalhost ~]# docker network ls NETWORK ID NAME DRIVER SCOPE ebcfad6f4255 bridge bridge local b881c67f8813 compose_lnmp_lnmp…

百度云上传身份证获取身份信息封装

1.目录结构 -script_discerm ------------包 -discerm.py --------------主要逻辑 -__init__.py -id_care---------------文件夹 存放图片 2.安装模块 pip install urllib31.23 pip install requests pip install base64 3.各文件内容 2.1 discerm.py import jsonimpo…

介绍Sping Boot的5个扩展点

1、初始化器ApplicationContextInitializer 我们在启动Spring Boot项目的时候&#xff0c;是执行这样一个方法来启动的 我们一层一层往下点&#xff0c;最终发现执行的是这个方法 所以我们在启动项目的时候也可以这样启动 new SpringApplication(SpringbootExtensionPointAp…

无脑入门pytorch系列(二)—— torch.mean

本系列教程适用于没有任何pytorch的同学&#xff08;简单的python语法还是要的&#xff09;&#xff0c;从代码的表层出发挖掘代码的深层含义&#xff0c;理解具体的意思和内涵。pytorch的很多函数看着非常简单&#xff0c;但是其中包含了很多内容&#xff0c;不了解其中的意思…