信号与线性系统预备训练3——MATLAB软件在信号与系统中的应用初步

信号与线性系统预备训练3——MATLAB软件在信号与系统中的应用初步

The Preparatory training3 of Signals and Linear Systems

对应教材:《信号与线性系统分析(第五版)》高等教育出版社,吴大正著

一、目的

1.熟悉和回顾MATLAB软件的基本操作和编程,为本课程翻转课堂和实验中基于MATLAB进行信号和系统的分析做好准备。
2.基于MATLAB,熟悉和回顾本课程所需的一些数学基础知识

二、任务安排及要求

1.根据所给出的各项内容要求,每位同学自主独立完成相关资料查阅、知识回顾和基于MATLAB的软件设计和调试,汇总分析相关结果并撰写报告(报告主要用于在课堂上做汇报展示,可以采用Word或者PPT形式,具体格式不限)。在完成任务的过程中,可以与其他同学商讨,或者向老师咨询,但应独立完成报告。
2.课堂上将随机抽取部分同学上台汇报展示(每位同学只展示其中部分内容),教师和其他同学针对该同学的汇报展示进行提问和讨论(教师提问有可能针对台下其他同学)。
3.熟练掌握MATLAB的基本操作和程序设计。

三、具体步骤要求

1、脚本与函数

要求:

(1)了解MATLAB的脚本和函数的概念,总结其联系和区别。举例说明对脚本文件和函数文件的命名有什么要求?
(2)任意编写一个MATLAB函数(函数功能自定),并利用脚本文件调用该函数,实现相应的函数功能。据此总结MATLAB函数的调用原理和方法。

解答:

(1)
联系:
脚本文件和函数文件都是m文件。
脚本是可以独立运行的,函数不能独立运行,需要被调用。
(2)
函数

%b、a分别为直接型的分子和分母系数
%C、B、A分别为并联型的常数项,分子项矩阵,分母项矩阵
function [C,B,A]=tf2par(b,a)
[r,p,C]=residuez(b,a);
N=length(r);            
A=zeros(ceil(N/2),3);
B=A;                    
k=1;                   
if mod(N,2)==1          
for i=1:2:N-1
[B(k,:),A(k,:)]=residuez([r(i),r(i+1)],[p(i),p(i+1)],0);
k=k+1;
end
B(end,:)=[r(end),0,0];
A(end,:)=[1,-p(end),0];
else                    
for i=1:2:N
[B(k,:),A(k,:)]=residuez([r(i),r(i+1)],[p(i),p(i+1)],0);
k=k+1;
end
end
end

调用

syms z;
A=[1 2 -3 4 5 -6 7];
B=[7 -6 5 4 -3 2 1];
[S,G]=tf2sos(B,A)
[c,b,a]=tf2par(B,A)

调用格式:
[输出参数1,输出参数2,…]=函数名(输入参数1,输入参数2,…)
函数调用可以嵌套,一个函数可以调用别的函数,甚至调用它自己。

2、符号运算和数值运算

要求:

符号运算和数值运算是MATLAB中两种不同的数学运算模式,其用途也不同。符号运算一般用于理论推导,得到的是运算结果的解析表达式;数字运算一般用于数值求解和图形化展示,得到的运算结果是数据(数组、矩阵),可以直接绘制成图表的形式。
(1)进一步了解符号运算与数值运算的区别,掌握两种不同运算模式的基本编程方法。
(2)了解符号运算函数dsolve(求解微分方程)、fourier(傅里叶变换)、ifourier(傅里叶反变换)、laplace(拉普拉斯变换)、ilaplace(拉普拉斯反变换)、ztrans(Z变换)、iztrans(Z反变换)等的功能,分别举例说明这些函数的用法。
(3)根据傅里叶变换的定义,采用数值运算的方法计算某个函数(具体函数自定)的傅里叶变换。若自己独立编程完成有困难,可以咨询老师或者到网络上搜索相关示例,但应该理解其运算原理和程序设计原理。

解答:

(1)
创建符号变量的基本方法——利用syms命令
例如:

syms x a b
f=x^2+a*x+b;
fx=diff(f,x)

运行结果:

fx = a + 2*x

数值运算为直接赋值
例如:

a=1;
b=2;
c=a+b

运行结果:

c = 3

(2)
dsolve:用来解符号常微分方程、方程组,如果没有初始条件,则求出通解,如果有初始条件,则求出特解。
句法:

S = dsolve(eqn)
S = dsolve(eqn,cond)
[y1,...,yN] = dsolve(___)

句法解释:

S=dsolve(eqn)求解微分方程eqn,其中eqn是符号方程。使用diff和==表示微分方程。例如,diff(y,x)==y表示等式dy/dx=y。通过将方程指定为微分方程的向量来求解微分方程组。
例子:
解方程:
d y d t = a y \frac{\mathrm{d}y}{\mathrm{d}t}=ay dtdy=ay

syms a y(t)
eqn = diff(y,t) == a*y;
dsolve(eqn)
ans =
C1*exp(a*t)

解高阶方程:
d 2 y d t 2 = a y \frac{\mathrm{d^{2}}y}{\mathrm{d}t^{2}}=ay dt2d2y=ay

syms y(t) a
eqn = diff(y,t,2) == a*y;
ySol(t) = dsolve(eqn)
ySol(t) =
C2*exp(-a^(1/2)*t) + C3*exp(a^(1/2)*t)

S=dsolve(eqn,cond)用初始或边界条件cond求解方程。
例子:
解如下方程:
d y d t = a y \frac{\mathrm{d}y}{\mathrm{d}t}=ay dtdy=ay
且已知条件:
y ( 0 ) = 5 y(0)=5 y0=5

syms y(t) a
eqn = diff(y,t) == a*y;
cond = y(0) == 5;
ySol(t) = dsolve(eqn,cond)
ySol(t) =
5*exp(a*t)

解高阶方程:
d 2 y d t 2 = a 2 y \frac{\mathrm{d^{2}}y}{\mathrm{d}t^{2}}=a^{2}y dt2d2y=a2y
且条件:
y ( 0 ) = b , y ′ ( 0 ) = 1 y(0)=b,y'(0)=1 y(0)=b,y(0)=1

syms y(t) a b
eqn = diff(y,t,2) == a^2*y;
Dy = diff(y,t);
cond = [y(0)==b, Dy(0)==1];
ySol(t) = dsolve(eqn,cond)
ySol(t) =
(exp(a*t)*(a*b + 1))/(2*a) + (exp(-a*t)*(a*b - 1))/(2*a)

[y1,…,yN]=dsolve(__)将解分配给变量y1,…,yN。

例子:
解方程组:
{ d y d t = z d z d t = − y \begin{cases} \begin{aligned} \frac{\mathrm{d}y}{\mathrm{d}t}=z\\ \frac{\mathrm{d}z}{\mathrm{d}t}=-y \end{aligned} \end{cases} dtdy=zdtdz=y

syms y(t) z(t)
eqns = [diff(y,t)==z, diff(z,t)==-y];
[ySol(t) zSol(t)] = dsolve(eqns)
ySol(t) =
C2*cos(t) + C1*sin(t)
zSol(t) =
C1*cos(t) - C2*sin(t)

fourier:傅里叶变换——将满足一定条件的某个函数表示成三角函数(正弦和/或余弦函数)或者它们的积分的线性组合。
F=fourier(f)是符号表达式的傅立叶变换或具有默认自变量x的函数f。默认情况下,结果F是w的函数。如果f=f(w),则F作为变量v的函数返回F=F(v)。
F=fourier(f,v)返回F作为变量v的函数而不是默认变量w。
F=fourier(f,u,v)将F视为变量u的函数而不是默认变量x。

syms t v w x f(x)fourier(1/t)   returns   -pi*sign(w)*1ifourier(exp(-x^2),x,t)   returns   pi^(1/2)*exp(-t^2/4)fourier(exp(-t)*heaviside(t),v)   returns   1/(1+v*1i)fourier(diff(f(x)),x,w)   returns   w*fourier(f(x),x,w)*1i

ifourier:傅里叶逆变换
f=ifourier(F)是符号的傅立叶逆变换。带有默认自变量w的表达式或函数F。结果f默认是x的函数。如果F=F(x),则f作为变量t的函数返回,f=f(t)。
f=ifourier(F,u)返回f作为变量u的函数,而不是默认变量x。
f=ifourier(F,v,u)将F视为变量v的函数而不是默认变量w。
例如:

syms t u v w f(x)ifourier(w*exp(-3*w)*heaviside(w))  returns  1/(2*pi*(-3+x*1i)^2)ifourier(1/(1 + w^2),u)   returns   exp(-abs(u))/2ifourier(v/(1 + w^2),v,u)   returns   -(dirac(1,u)*1i)/(w^2+1)ifourier(fourier(f(x),x,w),w,x)   returns   f(x)

laplace:以实现信号f(t)的拉普拉斯变换
L=laplace (f) 是符号函数f的拉普拉斯变换,默认返回函数L是关于s的函数。
L=laplace (f,t) 是符号函数f的拉普拉斯变换,返回函数L是关于t的函数。
L=laplace (f,w,z) 是关于w的函数f的拉普拉斯变换,返回函数L是关于z的函数。
函数调用实例

syms a s t w xlaplace(t^5)                 returns   120/s^6laplace(exp(a*s))             returns   1/(t-a)laplace(sin(w*x),t)            returns   w/(t^2+w^2)laplace(cos(x*w),w,t)          returns   t/(t^2+x^2)laplace(x^sym(3/2),t)          returns   3/4*pi^(1/2)/t^(5/2)laplace(diff(sym('F(t)')))        returns   laplace(F(t),t,s)*s-F(0)

ilaplace:可以实现信号F(s)的拉普拉斯逆变换
F = ilaplace(L) 是函数L(s)的拉普拉斯逆变换,默认返回函数F是关于t的函数。
F = ilaplace(L,y) 是函数L(s)的拉普拉斯逆变换,返回函数F是关于y的函数。
F = ilaplace(L,y,x) 返回函数F是关于x的函数。
函数调用实例

 syms s t w x yilaplace(1/(s-1))                  returns   exp(t)ilaplace(1/(t^2+1))                returns   sin(x)ilaplace(t^(-sym(5/2)),x)            returns   4/3/pi^(1/2)*x^(3/2)ilaplace(y/(y^2 + w^2),y,x)          returns   cos(w*x)ilaplace(sym('laplace(F(x),x,s)'),s,x)   returns   F(x)

ztrans:实现信号f(k)的z变换
F = ztrans (f) 是函数f(n)的z变换,默认返回函数F是关于z的函数。
F = ztrans (f,w) 是函数f(n)的z变换,返回函数F是关于w的函数。
F = ztrans (f,k,w) 是函数f(k)的z变换,返回函数F是关于w的函数。
函数调用范例

syms k n w z
ztrans(2^n)                returns  z/(z-2)
ztrans(sin(k*n),w)          returns  sin(k)*w/(1-2*w*cos(k)+w^2)
ztrans(cos(n*k),k,z)         returns  z*(-cos(n)+z)/(-2*z*cos(n)+z^2+1)
ztrans(cos(n*k),n,w)         returns  w*(-cos(k)+w)/(-2*w*cos(k)+w^2+1)
ztrans(sym('f(n+1)'))         returns  z*ztrans(f(n),n,z)-f(0)*z

iztrans:实现信号F(z)的逆z变换
f = iztrans (F) 是函数F(z)的逆z变换,默认返回函数f是关于n的函数。
f = iztrans (F,k) 是函数F(z)的逆z变换,返回函数f是关于k的函数。
f = iztrans (F,w,k) 是函数F(w)的逆z变换,返回函数f是关于k的函数。
函数调用范例:

syms z x k f(n)
iztrans(z/(z-2))        returns   2^n
iztrans(sin(1/n))  returns  -(1i^(k-1)*((-1)^k-1))/(2*factorial(k))
iztrans(exp(x/z),z,k)    returns   x^k/k
iztrans(ztrans(f(n),n,z),z,k)  returns  f(k)

(3)
对函数x=sin(20πt)+sin(80πt)做傅里叶变换

t=0:1/100:10-1/100;
x=sin(2*pi*10*t)+sin(2*pi*40*t);
y=fft(x);
m=abs(y);
f=(0:numel(y)-1)'*100/numel(y);
plot(f,m);
grid on;
ylabel('幅度');
xlabel('频率');

在这里插入图片描述

3、运算结果的可视化函数调用范例

要求:

将运算结果表达成更为直观的图形化形式,是MATLAB的一个重要功能,便于直观地理解一些比较抽象的概念和理论分析结果。一般来说,图形化表示应基于数值运算的结果,但对于符号运算结果,MATLAB也定义了一些直接基于解析表达式来绘图的函数。
运算结果图形化表示时需要特别注意的一个问题,是绘图坐标轴范围的合理选取问题:图形化表示的坐标范围总是有限的,应该在有限的绘图区间内,充分展现所关注的运算结果的特征。绘图坐标范围太小或者区间选择不合理,不能完整展现运算结果的特征;坐标范围太大,则无关图形太多,特征图形太小,其特性展现不突出。
(1)基于数值运算结果的常用可视化函数。了解plot(二维曲线)、plot3(三维曲线)、surf(三维阴影曲面)、mesh(三维网格曲面)、stem(二维离散序列)、stem3(三维离散序列)等常用图形化函数的功能和用法,并举例展示。
(2)基于符号运算结果的常用可视化函数。了解ezplot(二维曲线)、ezplot3(三维曲线)、ezsurf(三维阴影曲面)、ezmesh(三维网格曲面)等基于解析表达式的图形化函数的功能和用法,并利用这些函数分别绘制dsolve(求解微分方程)、fourier(傅里叶变换)、laplace(拉普拉斯变换)等符号函数运算结果的图形,注意根据需要选择适当的函数、维数和绘图坐标轴范围。
(3)给定一个函数(自定),分别用符号运算和数字运算的方式求其傅里叶变换,然后分别基于数值运算和符号运算结果绘图,注意选择适当的数值计算范围和绘图坐标轴范围。

解答:

(1)
plot

x = 0:pi/10:2*pi;
y1 = sin(x);
y2 = sin(x-0.25);
y3 = sin(x-0.5);figure
plot(x,y1,'g',x,y2,'b--o',x,y3,'c*')

在这里插入图片描述
plot3

t = 0:pi/50:10*pi;
st = sin(t);
ct = cos(t);figure
plot3(st,ct,t)

在这里插入图片描述
surf

[X,Y] = meshgrid(1:0.5:10,1:20);
Z = sin(X) + cos(Y);
surf(X,Y,Z)

在这里插入图片描述
mesh

[X,Y] = meshgrid(-8:.5:8);
R = sqrt(X.^2 + Y.^2) + eps;
Z = sin(R)./R;
C = gradient(Z);figure
mesh(X,Y,Z,C)

在这里插入图片描述
stem

figure
X = linspace(0,2*pi,25)';
Y = (cos(2*X));
stem(X,Y,'LineStyle','-.',...'MarkerFaceColor','red',...'MarkerEdgeColor','green')

在这里插入图片描述
stem3

figure
theta = linspace(0,2*pi);
X = cos(theta);
Y = sin(theta);
Z = theta;
stem3(X,Y,Z,':*m')

在这里插入图片描述

(2)
ezplot

ezplot('x^2-y^4')

在这里插入图片描述
ezplot3

ezplot3('sin(t)','cos(t)','t',[0,6*pi])

在这里插入图片描述

ezsurf

ezsurf('sqrt(1-x^2-y^2)')

在这里插入图片描述
ezmesh

fh = @(x,y) x.*exp(-x.^2-y.^2);
ezmesh(fh,40)

在这里插入图片描述

(3)

暂无,欢迎贡献分享

4、音频信号采集和保存、回放

要求:

MATLAB可以调用电脑的声卡进行音频信号的采集和回放。自行查阅相关资料,了解基于audiorecorder对象的音频采集、保存(含保存为音频文件)、音频文件读取、回放等功能的程序实现方法,并举例说明。

解答:

music=audiorecorder(8000,16,2);
%创建一个保存音频信息的对象,它包含采样率,时间和录制的音频信息等等。
%44100表示采样为44100Hz(可改为8000, 11025, 22050等,
%此数值越大,录入的声音质量越好,相应需要的存储空间越大)
%16为用16bits存储,2为两通道即立体声(也可以改为1即单声道)。recordblocking(music,5);
%开始录制,此时对着麦克风说话即可,录制时间为5秒。
play(music);MyRecording=getaudiodata(music);
%得到以n*2列数字矩阵存储的刚录制的音频信号。
plot(MyRecording);filename='myspeech.wav';
audiowrite(filename,MyRecording,8000);
%MyRecording表示要存入的波形矩阵,
%8000表采样率,'myspeech'为存储的文件名
[y, fs]=audioread('myspeech.wav');

在这里插入图片描述

5、帮助和错误提示

要求:

(1)MATLAB内部定义了大量的功能函数供用户使用,当用户不清楚函数的功能和用法时,可以在命令行窗口用“help 函数名”查看该函数的帮助信息,并通过其中的链接了解该函数的更多细节(英文)。请举例说明help命令的使用。
(2)当执行的MATLAB命令(直接在命令行运行)或者脚本存在错误时,MATLAB会给出相应的错误提示,以便用户排除错误。请查阅网络资料,了解MATLAB中常见的错误提示及其产生的原因,并通过例子说明其中的一些错误。

解答:

(1)
在这里插入图片描述
(2)
在这里插入图片描述

三、反思总结

3(3)暂无

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/228795.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

Pycharm第三方库导入失败避坑!

最近遇到了明明安装了 python 第三方库,但是在 pycharm 当中却导入不成功的问题。 使用Pycharm手动安装三方库和自动安装三方库都失败,以及Pycharm终端使用pip命令安装也未解决。网上找各种方法尝试都没成功,原来是一不小心就跳进了虚拟环境…

C++中的继承(一)

文章目录 前言概念访问限定符基类和派生类的赋值转换继承中的作用域派生类的默认成员函数构造函数 拷贝构造析构函数 继承的其他一些细节 前言 我们之前说过,继承是面向对象的三大特性。 面向对象的三大特性: 封装、继承、多态。 封装在类和对象体现出…

2043杨辉三角(C语言)

目录 一:题目 二:思路分析 三:代码 一:题目 二:思路分析 1.通过杨辉三角,不难发现中间的数等于肩头两个数之和 2.但是当我们的输出结果,与杨辉三角的形式有所不同,但是我们可以找…

Freemarker基本语法与案例讲解

🎉🎉欢迎来到我的CSDN主页!🎉🎉 🏅我是Java方文山,一个在CSDN分享笔记的博主。📚📚 🌟推荐给大家我的专栏《SpringBoot》。🎯🎯 &…

python接口自动化测试-unittest-批量用例管理

我们日常项目中的接口测试案例肯定不止一个,当案例越来越多时我们如何管理这些批量案例?如何保证案例不重复?如果案例非常多(成百上千,甚至更多)时如何保证案例执行的效率?如何做(批…

利用n_gram进行情感分析

一、思路 二、关键步骤实现 1、利用tf-idf进行特征提取 详见利用tf-idf对特征进行提取-CSDN博客 2、利用svm进行模型训练 详见​​​​​​​​​​​​​​利用svm进行情感分析-CSDN博客

搞懂这6 个持续集成工具,领先80%测试人!

开发人员喜欢把写的代码当成自己的孩子,他们会被当成艺术品一样呵护。作为家长,总是会认为自己的孩子是最好的,也会尽全力给自己的孩子最好的,就算有时候会超出自己的能力范围。 最终,孩子会走出去,和其他…

HarmonyOS云开发基础认证考试满分答案(100分)【全网最全-不断更新】【鸿蒙专栏-29】

系列文章: HarmonyOS应用开发者基础认证满分答案(100分) HarmonyOS应用开发者基础认证【闯关习题 满分答案】 HarmonyOS应用开发者高级认证满分答案(100分) HarmonyOS云开发基础认证满分答案(100分&#xf…

C++设计模式-Builder 构建器

通过“对象创建” 模式绕开new,来避免对象创建(new)过程中所导致的紧耦合(依赖具体类),从而支持对象创建的稳定。它是接口抽象之后的第一步工作。 一、动机 在软件系统中,有时候面临着“一个复…

Spark基础入门

spark基础入门 环境搭建 localstandlonespark ha spark code spark corespark sqlspark streaming 环境搭建 准备工作 创建安装目录 mkdir /opt/soft cd /opt/soft下载scala wget https://downloads.lightbend.com/scala/2.13.12/scala-2.13.12.tgz -P /opt/soft解压scala…

单元测试计划、用例、报告、评审编制模板

单元测试支撑文档编制模板,具体文档如下: 1. 单元测试计划 2. 单元测试用例 3. 单元测试报告 4. 编码及测试评审报告 软件项目相关资料全套获取:软件项目开发全套文档下载-CSDN博客 1、单元测试计划 2、单元测试用例 3、单元测试报告 4、编码…

FastSAM 分割一切 速度可以比 SAM 快 50 倍

一、FastSAM 在自然语言处理领域有 ChatGPT 通用大语言模型系列,但是在图像领域好像一直没有通用领域模型,但MetaAI 提出能够 分割一切 的视觉基础大模型 SAM 可以做到很好的分割效果,并且不限于场景、不限于目标,为探索视觉大模…

四. 基于环视Camera的BEV感知算法-BEVDet

目录 前言0. 简述1. 算法动机&开创性思路2. 主体结构3. 损失函数4. 性能对比总结下载链接参考 前言 自动驾驶之心推出的《国内首个BVE感知全栈系列学习教程》,链接。记录下个人学习笔记,仅供自己参考 本次课程我们来学习下课程第四章——基于环视Cam…

Java系列-HashMap构造方法

1.无参 只初始化了loadFactor public class HashMap<K,V> extends AbstractMap<K,V>implements Map<K,V>, Cloneable, Serializable {final float loadFactor;public HashMap() {this.loadFactor DEFAULT_LOAD_FACTOR; // all other fields defaulted} }2…

Android动画

关于作者&#xff1a;CSDN内容合伙人、技术专家&#xff0c; 从零开始做日活千万级APP。 专注于分享各领域原创系列文章 &#xff0c;擅长java后端、移动开发、商业变现、人工智能等&#xff0c;希望大家多多支持。 目录 一、导读二、概览三、动画实现3.1 帧动画资源文件中实现…

【MySQL】触发器trigger / 事件

文章目录 1. 触发器 trigger1.1 触发器命名1.2 new和old关键字1.3 案例&#xff1a;insert 触发器1.4 练习&#xff1a;delete 触发器1.5 查看触发器 show triggers1.6 使用触发器记录对表的操作 2 事件2.1 打开 / 关闭事件调度器2.2 创建事件 create event2.3 查看&#xff0c…

软件设计师——数据结构(二)

&#x1f4d1;前言 本文主要是【数据结构】——软件设计师——数据结构的文章&#xff0c;如果有什么需要改进的地方还请大佬指出⛺️ &#x1f3ac;作者简介&#xff1a;大家好&#xff0c;我是听风与他&#x1f947; ☁️博客首页&#xff1a;CSDN主页听风与他 &#x1f304…

5个免费、跨平台的SQLite数据库可视化工具

前言 SQLite是一个轻量级的嵌入式关系型数据库&#xff0c;目前最新的版本是 SQLite3。今天推荐5个实用的SQLite数据库可视化工具(GUI)&#xff0c;帮助大家更好的管理SQLite数据库。 什么是SQLite&#xff1f; SQLite是一个轻量级的嵌入式关系型数据库&#xff0c;它以一个…

dp中最短编辑距离的笔记(分析dp)

dp分析往往就是看最后一步的变化。 分析&#xff1a; 设a串长度为i&#xff0c;b串长度为j。题目要求为通过三种操作将a字符串转化为b字符串的最少次数。 删除操作&#xff1a; 把a[i]删除后a[1~i]和b[1~j]匹配&#xff0c;所以可以得到f[i - 1][j] 1&#xff0c;在此之前要先…

连锁管理系统是什么?有哪些功能?

连锁管理系统帮助门店实现POS收银管理、门店管理、采购订货管理、线上商城搭建、供应链管理一体化管理系统&#xff0c;快速提高门店管理效率&#xff0c;无论你的门店有多少&#xff0c;连锁总部都能通过系统随时洞察监管门店的所有运营数据。 连锁管理系统由&#xff1a;1个…