滑动窗口最大值(LeetCode 239)

文章目录

  • 1.问题描述
  • 2.难度等级
  • 3.热门指数
  • 4.解题思路
    • 方法一:暴力法
    • 方法二:优先队列
    • 方法三:单调队列
  • 参考文献

1.问题描述

给你一个整数数组 nums,有一个大小为 k 的滑动窗口从数组的最左侧移动到数组的最右侧。你只可以看到在滑动窗口内的 k 个数字。滑动窗口每次只向右移动一位。

返回滑动窗口中的最大值 。

示例 1:

输入:nums = [1,3,-1,-3,5,3,6,7], k = 3
输出:[3,3,5,5,6,7]
解释:
滑动窗口的位置                最大值
---------------               -----
[1  3  -1] -3  5  3  6  7       31 [3  -1  -3] 5  3  6  7       31  3 [-1  -3  5] 3  6  7       51  3  -1 [-3  5  3] 6  7       51  3  -1  -3 [5  3  6] 7       61  3  -1  -3  5 [3  6  7]      7

示例 2:

输入:nums = [1], k = 1
输出:[1]

提示:

1 <= nums.length <= 10^5
10^4 <= nums[i] <= 10^4
1 <= k <= nums.length

2.难度等级

Hard。

3.热门指数

★★★★☆

出题公司:阿里、腾讯、字节。

4.解题思路

方法一:暴力法

遍历所有的滑动窗口,通过遍历窗口内的所有值获取窗口最大值。

那一共有多少个滑动窗口呢,小学题目,一共可以得到 n-k+1 个滑动窗口。其中 n 为数组长度,k 为滑动窗口大小。

假设 nums = [1,3,-1,-3,5,3,6,7] 和 k = 3,那么窗口数为 n-k+1 = 6。

在这里插入图片描述

时间复杂度: O((n-k+1)k)。

空间复杂度:O(1)。不算结果集占用的内存,使用一个变量表示滑动窗口的最大值,所以空间复杂度为 O(1)。

注意: 该解法在 LeetCode 会「超出时间限制」。

下面以 Golang 为例给出实现。

func maxSlidingWindow(nums []int, k int) []int {var r []intfor i := k; i <= len(nums); i++ {max := slices.Max(nums[i-k:i])r = append(r, max)}return r
}

方法二:优先队列

好一些的做法,使用优先队列(堆)来做。

在一个堆中,根节点是最大(或最小)节点。如果根节点最小,称之为小顶堆(或小根堆),如果根节点最大,称之为大顶堆(或大根堆)。注意堆的左右孩子没有大小的顺序。

我们可以构建维护一个大顶堆,堆顶元素就是滑动窗口中的最大值。每一次窗口滑动的时候,我们都需要将新进入窗口的元素加到堆中。

注意: 因为堆不支持删除指定的元素,删除元素只能将堆顶的元素弹出,所以在移动窗口时,左边离开窗口的元素不着急从堆中删除,而是当堆顶元素不在窗口中时,不断地移除堆顶的元素,直到堆顶的元素出现在滑动窗口中。此时,堆顶元素就是滑动窗口中的最大值。

为了方便判断堆顶元素与滑动窗口的位置关系,我们在堆中存储二元组 (num, index),堆的元素是下标 index,权重是下标对应的值 num。

时间复杂度: 时间复杂度:O(nlog⁡n),其中 n 是数组 nums 的长度。在最坏情况下,数组 nums 中的元素单调递增,那么最终优先队列中包含了所有元素,没有元素被移除。由于将一个元素放入优先队列的时间复杂度为 O(log⁡n),因此总时间复杂度为 O(nlog⁡n)。

空间复杂度: O(n),即为优先队列需要使用的空间。

下面以 Golang 为例给出实现。

// a 表示数组,用于表示堆中元素的权重。
var a []int// 堆,需要实现 heap.Interface 接口。
// 使用 []int 作为堆的存储结构,其中存储数组 nums 的下标。
type hp struct{ sort.IntSlice }
func (h hp) Less(i, j int) bool  { return a[h.IntSlice[i]] > a[h.IntSlice[j]] }
func (h *hp) Push(v interface{}) { h.IntSlice = append(h.IntSlice, v.(int)) }// 注意:heap 包的源码在 Pop 前会将堆顶元素与最后一个元素交换后再调用该函数。
func (h *hp) Pop() interface{}   { s := h.IntSlice; v := s[len(s)-1]; h.IntSlice = s[:len(s)-1]; return v }func maxSlidingWindow(nums []int, k int) []int {a = numsq := &hp{make([]int, k)}for i := 0; i < k; i++ {q.IntSlice[i] = i}heap.Init(q)n := len(nums)r := make([]int, 1, n-k+1)r[0] = nums[q.IntSlice[0]]for i := k; i < n; i++ {heap.Push(q, i)// 当堆顶元素不在窗口中时不断弹出,直至堆顶的元素出现在滑动窗口中。for q.IntSlice[0] <= i-k {heap.Pop(q)}r = append(r, nums[q.IntSlice[0]])}return r
}

方法三:单调队列

能不能在线性时间内求解该问题呢?

我们可以通过一个单调队列保存当前窗口的最大值以及「在窗口最大值后面递减的值」。

为了便于判断队首元素是否超出窗口范围,所以队列中保存数组元素下标。

  1. 首先初始化第一个窗口对应的单调队列。遍历窗口元素:
  • 如果大于等于队尾元素,则删除队尾元素,然后将元素下标存入队尾。
  • 如果小于队尾元素,则直接入队列。
  1. 然后获取队首元素作为第一个窗口的最大值。

  2. 当滑动窗口向右移动时,我们需要把一个新的元素放入队列。放入方式与初始化第一个窗口对应的单调队列相同。

  3. 每移动一次窗口,都需要判断队首元素下标是否已经不在当前窗口,如果不在则移除。

为了可以同时弹出队首和队尾的元素,我们需要使用「双端队列」。

时间复杂度: O(n),其中 n 是数组 nums 的长度。每一个下标恰好被放入队列一次,并且最多被弹出队列一次,因此时间复杂度为 O(n)。

空间复杂度: O(k)。与方法一不同的是,在方法二中我们使用的数据结构是双向的,因此「不断从队首弹出元素」保证了队列中最多不会有超过 k+1 个元素,因此队列使用的空间为 O(k)。

下面以 Golang 为例给出实现:

func maxSlidingWindow(nums []int, k int) []int {// 双端队列。q := []int{}push := func(i int) {for len(q) > 0 && nums[i] >= nums[q[len(q)-1]] {q = q[:len(q)-1]}q = append(q, i)}// 初始化第一个窗口对应的队列。for i := 0; i < k; i++ {push(i)}n := len(nums)r := make([]int, 1, n-k+1)r[0] = nums[q[0]]// 移动窗口。for i := k; i < n; i++ {push(i)// 如果队列首部元素下标不在窗口则移除。if q[0] <= i-k {q = q[1:]}r = append(r, nums[q[0]])}return r
}

参考文献

239. 滑动窗口最大值

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/227891.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

【LeetCode刷题-树】--173.二叉搜索树迭代器

173.二叉搜索树迭代器 本题就是实现二叉树的中序遍历&#xff0c;利用数组本身实现迭代器 /*** Definition for a binary tree node.* public class TreeNode {* int val;* TreeNode left;* TreeNode right;* TreeNode() {}* TreeNode(int val) { this.va…

如何在Docker部署draw.io流程图软件并实现公网远程访问

前言 提到流程图&#xff0c;大家第一时间可能会想到Visio&#xff0c;不可否认&#xff0c;VIsio确实是功能强大&#xff0c;但是软件为收费&#xff0c;并且因为其功能强大&#xff0c;导致安装需要很多的系统内存&#xff0c;并且是不可跨平台使用。所以&#xff0c;今天给…

牛客小白月赛83 解题报告

题目链接&#xff1a; https://ac.nowcoder.com/acm/contest/72041#question A题 解题思路 签到 代码 #include <bits/stdc.h> using namespace std;int main() {int a, b, c, d, e;cin >> a >> b >> c >> d >> e;int A, B, C, D…

【人工智能】实验二: 洗衣机模糊推理系统实验与基础知识

实验二: 洗衣机模糊推理系统实验 实验目的 理解模糊逻辑推理的原理及特点&#xff0c;熟练应用模糊推理。 实验内容 设计洗衣机洗涤时间的模糊控制。 实验要求 已知人的操作经验为&#xff1a; “污泥越多&#xff0c;油脂越多&#xff0c;洗涤时间越长”&#xff1b;“…

DDD挤水分和强行加异性为好友-UMLChina建模知识竞赛第4赛季第25轮

DDD领域驱动设计批评文集 做强化自测题获得“软件方法建模师”称号 《软件方法》各章合集 参考潘加宇在《软件方法》和UMLChina公众号文章中发表的内容作答。在本文下留言回答。 只要最先答对前3题&#xff0c;即可获得本轮优胜。第4题为附加题&#xff0c;对错不影响优胜者…

开源免费图床Lychee本地部署搭建个人云图床并公网访问【内网穿透】

文章目录 1.前言2. Lychee网站搭建2.1. Lychee下载和安装2.2 Lychee网页测试2.3 cpolar的安装和注册 3.本地网页发布3.1 Cpolar云端设置3.2 Cpolar本地设置 4.公网访问测试5.结语 1.前言 图床作为图片集中存放的服务网站&#xff0c;可以看做是云存储的一部分&#xff0c;既可…

作者推荐 |【深入了解系统性能优化】「实战技术专题」全方面带你透彻探索服务优化技术方案(方案分析篇)

全方面带你透彻探索服务优化技术方案 前提背景影响一个系统性能的方方面面代码优化数据库优化网络优化硬件优化 常用的性能评价/测试指标响应时间并发数吞吐量响应时间、并发数和吞吐量之间的关系运作流程关系 性能优化方案的建议避免过早优化进行系统性能测试寻找系统瓶颈&…

R 语言相关资源分享

简介 分享一个 Github 仓库&#xff0c;包含了大量 R 语言教程和资源&#xff0c;旨在帮助各种技能水平和背景的用户深化对 R 的理解。 下面给出一些截图&#xff0c;感兴趣的读者可以自行探索&#xff5e;

JVM-2-对象

对象创建 当Java虚拟机遇到一条字节码new指令时&#xff0c;首先将去检查这个指令的参数是否能在常量池中定位到一个类的符号引用&#xff0c;并且检查这个符号引用代表的类是否已被加载、解析和初始化过。如果没有&#xff0c;那必须先执行相应的类加载过程。 为对象分配空间…

003 Windows用户与组管理

Windows用户管理 一、用户账户 1、什么是用户账户 不同用户身份拥有不同的权限每个用户包含了一个名称和一个密码每个用户账户具有唯一的安全标识符查看系统中的用户 net user 安全标识符&#xff08;SID&#xff09; whoami /user 使用注册表查看 打开注册表命令regedi…

阿里云RDS提示过期释放实例了怎么找到库表

做朋友&#xff0c;不需要资格&#xff01;——《全职猎人》 直截了当 一步到位 ~

【数据结构和算法】--队列的特殊结构-循环队列

目录 循环队列的结构循环队列的实现循环队列的创建循环队列为空判断循环队列为满判断入队出队返回循环队列首元素返回循环队列尾元素释放循环队列 循环队列的结构 循环队列是队列的一种特殊结构&#xff0c;它的长度是固定的k&#xff0c;同样是先进先出&#xff0c;理论结构是…

飞翔的鸟。

一.准备工作 首先创建一个新的Java项目命名为“飞翔的鸟”&#xff0c;并在src中创建一个包命名为“com.qiku.bird"&#xff0c;在这个包内分别创建4个类命名为“Bird”、“BirdGame”、“Column”、“Ground”&#xff0c;并向需要的图片素材导入到包内。 二.代码呈现 pa…

大数据分析的流程有哪些

数据的采集和收集。大数据预处理。大数据建模和大数据方法。大数据分析和结果展示。

ChatGPT4 Excel 高级组合函数用法index+match完成实际需求

在Excel 函数用法中有一对组合函数使用是非常多的,那就是Index+match组合函数。 接下来我们用一个实际的需求让ChatGPT来帮我们实现一下。 我们给ChatGPT4发送一个prompt:有一个表格A2至A14为业务员B列至H列为1月至7月的销售额,请根据J2单元格的业务员与K2单元格的月份查找出…

LVS负载均衡群集,熟悉LVS的工作模式,了解LVS的调度策略以及ipvsadm工具的命令格式

目录 一、什么是群集 群集的作用&#xff1a; 群集的目的是什么 根据群集所针对的目标差异&#xff0c;可分为三种类型 负载均衡群集&#xff08;LBC&#xff09;load balance cluster 高可用群集&#xff08;HAC&#xff09;high availability cluster 高性能运算群集&a…

ChatGLM-6B模型结构组件源码阅读

一、前言 本文将介绍ChatGLM-6B的模型结构组件源码。 代练链接&#xff1a;https://huggingface.co/THUDM/chatglm-6b/blob/main/modeling_chatglm.py 二、激活函数 torch.jit.script def gelu_impl(x):"""OpenAIs gelu implementation."""r…

2020 ICPC·小米邀请赛 决赛 J. Rikka with Book(状压dp)

题目 登录—专业IT笔试面试备考平台_牛客网 n(n<20)本书&#xff0c;放在桌子上&#xff0c; 第i本书的可以看成是li(li<1e3)*1*1的物体&#xff0c;其中长为li&#xff0c;宽为1&#xff0c;高为1&#xff0c; 质量均匀分布&#xff0c;且为wi(wi<1e3) 求n本书摞…

基于linux系统的Tomcat+Mysql+Jdk环境搭建(二)jdk1.8 linux 上传到MobaXterm 工具的已有session里

【JDK安装】 1.首先下载一个JDK版本 官网地址&#xff1a;http://www.oracle.com/technetwork/java/javase/downloads/jdk8-downloads-2133151.html 下载1.8版本&#xff0c;用红框标注出来了&#xff1a; 也许有的同学看到没有1.8版本&#xff0c;你可以随便下载一个linux的…

平均数 C语言xdoj66

问题描述 计算n个整数&#xff08;x1,x2,x3...&#xff09;的平均数&#xff0c;结果保留两位小数。 输入说明 第一行为整数n&#xff08;1 < n <100&#xff09;&#xff0c;接下来是n个整数(0 < x1,x2,x3....< 2^31 - 1)。 输出说明 输出这n个整数的…