YOLOv5改进 | 注意力篇 | DAttention (DAT)注意力机制实现极限涨点

一、本文介绍

本文给大家带来的是YOLOv5改进DAT(Vision Transformer with Deformable Attention)的教程,其发布于2022年CVPR2022上同时被评选为Best Paper由此可以证明其是一种十分有效的改进机制,其主要的核心思想是引入可变形注意力机制和动态采样点(听着是不是和可变形动态卷积DCN挺相似)。本文的讲解主要包含三方面:DAT的网络结构思想、DAttention的代码复现,如何添加DAttention到你的结构中实现涨点,下面先来分享我测试的对比图(因为资源有限,我只用了1000张图片的数据集进行了200个epoch的训练,虽然这个实验不能产生确定性的结论,但是可以作为一个参考)。

推荐指数:⭐⭐⭐⭐⭐

适用检测对象->各种检测目标都可以使用,并不针对于某一特定的目标有效。

专栏回顾:YOLOv5改进专栏——持续复现各种顶会内容——内含100+创新

实验结果对比图-> 

目录

一、本文介绍

二、DAT的网络结构思想

2.1 DAT的主要思想和改进

2.2 DAT的网络结构图 

2.3 DAT和其他机制的对比

三、DAT即插即用的代码块

四、添加DAT到你的网络中

4.1 DAT的添加教程

4.1.1 修改一

​4.1.2 修改二

4.1.3 修改三 

4.1.4 修改四

4.2 DAT的yaml文件

4.2.1DAttentionyaml文件一(实验版本)

4.2.2 DAttention的yaml文件二 

4.3 DAT运行成功截图

五、DAT可添加的位置

5.1推荐DAT可添加的位置 

六、本文总结 


二、DAT的网络结构思想

论文地址: DAT论文地址

官方地址:官方代码的地址


2.1 DAT的主要思想和改进

DAT(Vision Transformer with Deformable Attention)是一种引入了可变形注意力机制的视觉Transformer,DAT的核心思想主要包括以下几个方面:

  1. 可变形注意力(Deformable Attention):传统的Transformer使用标准的自注意力机制,这种机制会处理图像中的所有像素,导致计算量很大。而DAT引入了可变形注意力机制,它只关注图像中的一小部分关键区域。这种方法可以显著减少计算量,同时保持良好的性能。

  2. 动态采样点:在可变形注意力机制中,DAT动态地选择采样点,而不是固定地处理整个图像。这种动态选择机制使得模型可以更加集中地关注于那些对当前任务最重要的区域。

  3. 即插即用:DAT的设计允许它适应不同的图像大小和内容,使其在多种视觉任务中都能有效工作,如图像分类、对象检测等。

总结:DAT通过引入可变形注意力机制,改进了视觉Transformer的效率和性能,使其在处理复杂的视觉任务时更加高效和准确。

2.2 DAT的网络结构图 

(a) 展示了可变形注意力的信息流。左侧部分,一组参考点均匀地放置在特征图上,这些点的偏移量是由查询通过偏移网络学习得到的。然后,如右侧所示,根据变形点从采样特征中投影出变形的键和值。相对位置偏差也通过变形点计算,增强了输出转换特征的多头注意力。为了清晰展示,图中仅显示了4个参考点,但在实际实现中实际上有更多的点。

(b) 展示了偏移生成网络的详细结构,每层输入和输出特征图的大小都有标注(这个Offset network在网络的代码中需要控制可添加可不添加)。

通过上面的方式产生多种参考点分布在图像上,从而提高检测的效率,最终的效果图如下->

2.3 DAT和其他机制的对比

DAT与其他视觉Transformer模型和CNN模型中的DCN(可变形卷积网络)的对比图如下,突出了它们处理查询的不同方法(图片展示的很直观,不给大家描述过程了)

三、DAT的核心代码

下面的代码是DAT的网络结构代码,官方的代码中存在许多bug而且参数都未定义,这里我替大家都行了修改而且在使用时无需手动添加任何参数(但是本文的方法需要按照有参的注意力机制添加但是只是不需要进行传入参数在yaml文件中),我都设置了通过模型进行了自动计算,使用方法看章节四。

import numpy as np
import torch
import torch.nn as nn
import torch.nn.functional as F
import einops
from timm.models.layers import  trunc_normal_
from ..common import Conv
class LayerNormProxy(nn.Module):def __init__(self, dim):super().__init__()self.norm = nn.LayerNorm(dim)def forward(self, x):x = einops.rearrange(x, 'b c h w -> b h w c')x = self.norm(x)return einops.rearrange(x, 'b h w c -> b c h w')class DAttentionBaseline(nn.Module):def __init__(self, q_size=(224,224), kv_size=(224,224), n_heads=8, n_head_channels=32, n_groups=1,attn_drop=0.0, proj_drop=0.0, stride=1,offset_range_factor=-1, use_pe=True, dwc_pe=True,no_off=False, fixed_pe=False, ksize=9, log_cpb=True):super().__init__()n_head_channels = int(q_size / 8)q_size = (q_size, q_size)self.dwc_pe = dwc_peself.n_head_channels = n_head_channelsself.scale = self.n_head_channels ** -0.5self.n_heads = n_headsself.q_h, self.q_w = q_size# self.kv_h, self.kv_w = kv_sizeself.kv_h, self.kv_w = self.q_h // stride, self.q_w // strideself.nc = n_head_channels * n_headsself.n_groups = n_groupsself.n_group_channels = self.nc // self.n_groupsself.n_group_heads = self.n_heads // self.n_groupsself.use_pe = use_peself.fixed_pe = fixed_peself.no_off = no_offself.offset_range_factor = offset_range_factorself.ksize = ksizeself.log_cpb = log_cpbself.stride = stridekk = self.ksizepad_size = kk // 2 if kk != stride else 0self.conv_offset = nn.Sequential(nn.Conv2d(self.n_group_channels, self.n_group_channels, kk, stride, pad_size, groups=self.n_group_channels),LayerNormProxy(self.n_group_channels),nn.GELU(),nn.Conv2d(self.n_group_channels, 2, 1, 1, 0, bias=False))if self.no_off:for m in self.conv_offset.parameters():m.requires_grad_(False)self.proj_q = nn.Conv2d(self.nc, self.nc,kernel_size=1, stride=1, padding=0)self.proj_k = nn.Conv2d(self.nc, self.nc,kernel_size=1, stride=1, padding=0)self.proj_v = nn.Conv2d(self.nc, self.nc,kernel_size=1, stride=1, padding=0)self.proj_out = nn.Conv2d(self.nc, self.nc,kernel_size=1, stride=1, padding=0)self.proj_drop = nn.Dropout(proj_drop, inplace=True)self.attn_drop = nn.Dropout(attn_drop, inplace=True)if self.use_pe and not self.no_off:if self.dwc_pe:self.rpe_table = nn.Conv2d(self.nc, self.nc, kernel_size=3, stride=1, padding=1, groups=self.nc)elif self.fixed_pe:self.rpe_table = nn.Parameter(torch.zeros(self.n_heads, self.q_h * self.q_w, self.kv_h * self.kv_w))trunc_normal_(self.rpe_table, std=0.01)elif self.log_cpb:# Borrowed from Swin-V2self.rpe_table = nn.Sequential(nn.Linear(2, 32, bias=True),nn.ReLU(inplace=True),nn.Linear(32, self.n_group_heads, bias=False))else:self.rpe_table = nn.Parameter(torch.zeros(self.n_heads, self.q_h * 2 - 1, self.q_w * 2 - 1))trunc_normal_(self.rpe_table, std=0.01)else:self.rpe_table = None@torch.no_grad()def _get_ref_points(self, H_key, W_key, B, dtype, device):ref_y, ref_x = torch.meshgrid(torch.linspace(0.5, H_key - 0.5, H_key, dtype=dtype, device=device),torch.linspace(0.5, W_key - 0.5, W_key, dtype=dtype, device=device),indexing='ij')ref = torch.stack((ref_y, ref_x), -1)ref[..., 1].div_(W_key - 1.0).mul_(2.0).sub_(1.0)ref[..., 0].div_(H_key - 1.0).mul_(2.0).sub_(1.0)ref = ref[None, ...].expand(B * self.n_groups, -1, -1, -1)  # B * g H W 2return ref@torch.no_grad()def _get_q_grid(self, H, W, B, dtype, device):ref_y, ref_x = torch.meshgrid(torch.arange(0, H, dtype=dtype, device=device),torch.arange(0, W, dtype=dtype, device=device),indexing='ij')ref = torch.stack((ref_y, ref_x), -1)ref[..., 1].div_(W - 1.0).mul_(2.0).sub_(1.0)ref[..., 0].div_(H - 1.0).mul_(2.0).sub_(1.0)ref = ref[None, ...].expand(B * self.n_groups, -1, -1, -1)  # B * g H W 2return refdef forward(self, x):x = xB, C, H, W = x.size()dtype, device = x.dtype, x.deviceq = self.proj_q(x)q_off = einops.rearrange(q, 'b (g c) h w -> (b g) c h w', g=self.n_groups, c=self.n_group_channels)offset = self.conv_offset(q_off).contiguous()  # B * g 2 Hg WgHk, Wk = offset.size(2), offset.size(3)n_sample = Hk * Wkif self.offset_range_factor >= 0 and not self.no_off:offset_range = torch.tensor([1.0 / (Hk - 1.0), 1.0 / (Wk - 1.0)], device=device).reshape(1, 2, 1, 1)offset = offset.tanh().mul(offset_range).mul(self.offset_range_factor)offset = einops.rearrange(offset, 'b p h w -> b h w p')reference = self._get_ref_points(Hk, Wk, B, dtype, device)if self.no_off:offset = offset.fill_(0.0)if self.offset_range_factor >= 0:pos = offset + referenceelse:pos = (offset + reference).clamp(-1., +1.)if self.no_off:x_sampled = F.avg_pool2d(x, kernel_size=self.stride, stride=self.stride)assert x_sampled.size(2) == Hk and x_sampled.size(3) == Wk, f"Size is {x_sampled.size()}"else:x_sampled = F.grid_sample(input=x.reshape(B * self.n_groups, self.n_group_channels, H, W),grid=pos[..., (1, 0)],  # y, x -> x, ymode='bilinear', align_corners=True)  # B * g, Cg, Hg, Wgx_sampled = x_sampled.reshape(B, C, 1, n_sample)# 检查权重的数据类型q = q.reshape(B * self.n_heads, self.n_head_channels, H * W)k = self.proj_k(x_sampled).reshape(B * self.n_heads, self.n_head_channels, n_sample)v = self.proj_v(x_sampled).reshape(B * self.n_heads, self.n_head_channels, n_sample)attn = torch.einsum('b c m, b c n -> b m n', q, k)  # B * h, HW, Nsattn = attn.mul(self.scale)if self.use_pe and (not self.no_off):if self.dwc_pe:residual_lepe = self.rpe_table(q.reshape(B, C, H, W)).reshape(B * self.n_heads, self.n_head_channels,H * W)elif self.fixed_pe:rpe_table = self.rpe_tableattn_bias = rpe_table[None, ...].expand(B, -1, -1, -1)attn = attn + attn_bias.reshape(B * self.n_heads, H * W, n_sample)elif self.log_cpb:q_grid = self._get_q_grid(H, W, B, dtype, device)displacement = (q_grid.reshape(B * self.n_groups, H * W, 2).unsqueeze(2) - pos.reshape(B * self.n_groups,n_sample,2).unsqueeze(1)).mul(4.0)  # d_y, d_x [-8, +8]displacement = torch.sign(displacement) * torch.log2(torch.abs(displacement) + 1.0) / np.log2(8.0)attn_bias = self.rpe_table(displacement)  # B * g, H * W, n_sample, h_gattn = attn + einops.rearrange(attn_bias, 'b m n h -> (b h) m n', h=self.n_group_heads)else:rpe_table = self.rpe_tablerpe_bias = rpe_table[None, ...].expand(B, -1, -1, -1)q_grid = self._get_q_grid(H, W, B, dtype, device)displacement = (q_grid.reshape(B * self.n_groups, H * W, 2).unsqueeze(2) - pos.reshape(B * self.n_groups,n_sample,2).unsqueeze(1)).mul(0.5)attn_bias = F.grid_sample(input=einops.rearrange(rpe_bias, 'b (g c) h w -> (b g) c h w', c=self.n_group_heads,g=self.n_groups),grid=displacement[..., (1, 0)],mode='bilinear', align_corners=True)  # B * g, h_g, HW, Nsattn_bias = attn_bias.reshape(B * self.n_heads, H * W, n_sample)attn = attn + attn_biasattn = F.softmax(attn, dim=2)attn = self.attn_drop(attn)out = torch.einsum('b m n, b c n -> b c m', attn, v)if self.use_pe and self.dwc_pe:out = out + residual_lepeout = out.reshape(B, C, H, W)y = self.proj_drop(self.proj_out(out))h, w = pos.reshape(B, self.n_groups, Hk, Wk, 2), reference.reshape(B, self.n_groups, Hk, Wk, 2)return yclass Bottleneck(nn.Module):# Standard bottleneckdef __init__(self, c1, c2, shortcut=True, g=1, e=0.5):  # ch_in, ch_out, shortcut, groups, expansionsuper().__init__()c_ = int(c2 * e)  # hidden channelsself.cv1 = Conv(c1, c_, 1, 1)self.cv2 = Conv(c_, c2, 3, 1, g=g)self.Dattention = DAttentionBaseline(c2)self.add = shortcut and c1 == c2def forward(self, x):return x + self.Dattention(self.cv2(self.cv1(x))) if self.add else self.Dattention(self.cv2(self.cv1(x)))class C3_Dattention(nn.Module):# CSP Bottleneck with 3 convolutionsdef __init__(self, c1, c2, n=1, shortcut=True, g=1, e=0.5):  # ch_in, ch_out, number, shortcut, groups, expansionsuper().__init__()c_ = int(c2 * e)  # hidden channelsself.cv1 = Conv(c1, c_, 1, 1)self.cv2 = Conv(c1, c_, 1, 1)self.cv3 = Conv(2 * c_, c2, 1)  # optional act=FReLU(c2)self.m = nn.Sequential(*(Bottleneck(c_, c_, shortcut, g, e=1.0) for _ in range(n)))def forward(self, x):return self.cv3(torch.cat((self.m(self.cv1(x)), self.cv2(x)), 1))

四、添加DAT到你的网络中

4.1 DAT的添加教程

4.1.1 修改一

我们找到如下的目录'yolov5-master/models'在这个目录下创建一整个文件目录(注意是目录,因为我这个专栏会出很多的更新,这里用一种一劳永逸的方法)文件目录起名modules,然后在下面新建一个文件,将我们的代码复制粘贴进去。


​4.1.2 修改二

然后新建一个__init__.py文件,然后我们在里面添加一行代码。注意标记一个'.'

这里改成你自己的就行,from .DAT import *即可。

​​


4.1.3 修改三 

然后我们找到如下文件''models/yolo.py''在开头的地方导入我们的模块按照如下修改->

​​


4.1.4 修改四

然后我们找到parse_model方法,按照如下修改->

到此就修改完成了,复制下面的ymal文件即可运行。


4.2 DAT的yaml文件

4.2.1DAttentionyaml文件一(实验版本)

# YOLOv5 🚀 by Ultralytics, AGPL-3.0 license# Parameters
nc: 80  # number of classes
depth_multiple: 0.33  # model depth multiple
width_multiple: 0.25  # layer channel multiple
anchors:- [10,13, 16,30, 33,23]  # P3/8- [30,61, 62,45, 59,119]  # P4/16- [116,90, 156,198, 373,326]  # P5/32# YOLOv5 v6.0 backbone
backbone:# [from, number, module, args][[-1, 1, Conv, [64, 6, 2, 2]],  # 0-P1/2[-1, 1, Conv, [128, 3, 2]],  # 1-P2/4[-1, 3, C3, [128]],[-1, 1, Conv, [256, 3, 2]],  # 3-P3/8[-1, 6, C3, [256]],[-1, 1, Conv, [512, 3, 2]],  # 5-P4/16[-1, 9, C3, [512]],[-1, 1, Conv, [1024, 3, 2]],  # 7-P5/32[-1, 3, C3, [1024]],[-1, 1, SPPF, [1024, 5]],  # 9]# YOLOv5 v6.0 head
head:[[-1, 1, Conv, [512, 1, 1]],[-1, 1, nn.Upsample, [None, 2, 'nearest']],[[-1, 6], 1, Concat, [1]],  # cat backbone P4[-1, 3, C3_Dattention, [512, False]],  # 13[-1, 1, Conv, [256, 1, 1]],[-1, 1, nn.Upsample, [None, 2, 'nearest']],[[-1, 4], 1, Concat, [1]],  # cat backbone P3[-1, 3, C3_Dattention, [256, False]],  # 17 (P3/8-small)[-1, 1, Conv, [256, 3, 2]],[[-1, 14], 1, Concat, [1]],  # cat head P4[-1, 3, C3_Dattention, [512, False]],  # 20 (P4/16-medium)[-1, 1, Conv, [512, 3, 2]],[[-1, 10], 1, Concat, [1]],  # cat head P5[-1, 3, C3_Dattention, [1024, False]],  # 23 (P5/32-large)[[17, 20, 23], 1, Detect, [nc, anchors]],  # Detect(P3, P4, P5)]

4.2.2 DAttention的yaml文件二 

此版本的yaml文件我试运行了一下,需要注意该版本需要显存比较大。

# YOLOv5 🚀 by Ultralytics, AGPL-3.0 license# Parameters
nc: 80  # number of classes
depth_multiple: 0.33  # model depth multiple
width_multiple: 0.25  # layer channel multiple
anchors:- [10,13, 16,30, 33,23]  # P3/8- [30,61, 62,45, 59,119]  # P4/16- [116,90, 156,198, 373,326]  # P5/32# YOLOv5 v6.0 backbone
backbone:# [from, number, module, args][[-1, 1, Conv, [64, 6, 2, 2]],  # 0-P1/2[-1, 1, Conv, [128, 3, 2]],  # 1-P2/4[-1, 3, C3, [128]],[-1, 1, Conv, [256, 3, 2]],  # 3-P3/8[-1, 6, C3, [256]],[-1, 1, Conv, [512, 3, 2]],  # 5-P4/16[-1, 9, C3, [512]],[-1, 1, Conv, [1024, 3, 2]],  # 7-P5/32[-1, 3, C3, [1024]],[-1, 1, SPPF, [1024, 5]],  # 9]# YOLOv5 v6.0 head
head:[[-1, 1, Conv, [512, 1, 1]],[-1, 1, nn.Upsample, [None, 2, 'nearest']],[[-1, 6], 1, Concat, [1]],  # cat backbone P4[-1, 3, C3, [512, False]],  # 13[-1, 1, Conv, [256, 1, 1]],[-1, 1, nn.Upsample, [None, 2, 'nearest']],[[-1, 4], 1, Concat, [1]],  # cat backbone P3[-1, 3, C3, [256, False]],  # 17 (P3/8-small)[-1, 1, DAttentionBaseline, []], # 18[-1, 1, Conv, [256, 3, 2]],[[-1, 14], 1, Concat, [1]],  # cat head P4[-1, 3, C3, [512, False]],  # 21 (P4/16-medium)[-1, 1, DAttentionBaseline, []], # 22[-1, 1, Conv, [512, 3, 2]],[[-1, 10], 1, Concat, [1]],  # cat head P5[-1, 3, C3, [1024, False]],  # 25 (P5/32-large)[-1, 1, DAttentionBaseline, []], # 26[[18, 22, 26], 1, Detect, [nc, anchors]],  # Detect(P3, P4, P5)]

4.3 DAT运行成功截图

附上我的运行记录确保我的教程是可用的。 

五、DAT可添加的位置

5.1推荐DAT可添加的位置 

DAT可以是一种即插即用的注意力机制,其可以添加的位置有很多,添加的位置不同效果也不同,所以我下面推荐几个添加的位,置大家可以进行参考,当然不一定要按照我推荐的地方添加。

  1. 残差连接中:在残差网络的残差连接中加入注意力机制(这个位置我推荐的原因是因为DCN放在残差里面效果挺好的大家可以尝试)

  2. 特征金字塔(SPPF):在特征金字塔网络之前,可以帮助模型更好地融合不同尺度的特征。

  3. Neck部分:YOLOv5的Neck部分负责特征融合,这里添加注意力机制可以帮助模型更有效地融合不同层次的特征。

  4. 输出层前:在最终的输出层前加入注意力机制可以使模型在做出最终预测之前,更加集中注意力于最关键的特征。

六、本文总结 

到此本文的正式分享内容就结束了,在这里给大家推荐我的YOLOv5改进有效涨点专栏,本专栏目前为新开的平均质量分98分,后期我会根据各种最新的前沿顶会进行论文复现,也会对一些老的改进机制进行补充,目前本专栏免费阅读(暂时,大家尽早关注不迷路~),如果大家觉得本文帮助到你了,订阅本专栏,关注后续更多的更新~

专栏回顾:YOLOv5改进专栏——持续复现各种顶会内容——内含100+创新

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/227596.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

微信小程序置顶导航,替代原生导航栏

效果图&#xff1a; 思路&#xff1a;Navigation是小程序的顶部导航组件&#xff0c;当页面配置navigationStyle设置为custom的时候可以使用此组件替代原生导航栏&#xff0c;wx.getSystemInfoSync获取可使用窗口高度 wxml代码&#xff1a; <!-- 头部 --> <view cla…

【docker】部署minio对象存储并用rclone同步

docker部署minio对象存储并用rclone同步 本文首发于 ❄️慕雪的寒舍 1.什么是minio&#xff1f; minio是一个开源的对象存储服务器&#xff0c;兼容S3协议。 官网&#xff1a;https://min.io/ 官方在开源的基础上也提供云端S3服务&#xff0c;分为个人和企业&#xff0c;有不…

【MySQL】图形化界面工具 DataGrip

使用 dataGrip: 1.添加数据源 2.连接本地数据库 user 是 root 密码是 123456 3.展示所有数据库 4.创建数据库 5.创建表 6.修改表 在需要修改的表上&#xff0c;右键选择 "Modify Table..." 如果想增加字段&#xff0c;直接点击号&#xff0c;录入字段信息&#x…

前端面试(5)

1、移动端适配 1.1、设置meta缩放比例&#xff0c;将设备窗口调整为设计图大小。 <!DOCTYPE html> <html lang"en"> <head><meta charset"UTF-8"><meta name"viewport" content"widthdevice-width,initial-sc…

MetaAI发布Seamless:两秒内实现跨语言同声传译

在当今日益互联的世界中&#xff0c;语言差异常常成为沟通的障碍。MetaAI最新发布的语音翻译大模型Seamless&#xff0c;正是为打破这一障碍而生。Seamless不仅提供流畅、高效的多语言翻译功能&#xff0c;更在保留说话人韵律和风格方面取得突破&#xff0c;是AI同声传译领域的…

MX6ULL学习笔记(十三)Linux 自带按键驱动程序

一、Linux 内核自带按键驱动使能。 Linux 内核也自带了 KEY 驱动&#xff0c;如果要使用内核自带的 KEY 驱动的话需要配置 Linux 内核&#xff0c;不过 Linux 内核一般默认已经使能了 KEY 驱动&#xff0c;但是我们还是要检查一下。 使用如下命令打开 Linux 配置菜单&#xff…

docker入门小结

docker是什么&#xff1f;它有什么优势&#xff1f; 快速获取开箱即用的程序 docker使得所有的应用传输就像我们日常通过聊天工具文件传输一样&#xff0c;发送方将程序传输到超级码头而接收方也只需通过超级码头进行获取即可&#xff0c;就像一只鲸鱼拖着货物来回运输一样。…

前端API请求缓存的5种方案

文章目录 一、前言二、[方案一]数据缓存三、[方案二]单promise 缓存四、[方案三]多promise 缓存五、[方案四]添加时间有关的缓存六、[方案五]基于修饰器的方案四七、最后 一、前言 开发 web 应用程序时&#xff0c;性能都是必不可少的话题。 对于webpack打包的单页面应用程序…

win中查看MD5、Linux中查看MD5

win中的MD5计算 1、用GitBash Git Bash Here md5sum.exe 我记得-孙燕姿.mp32、win自带命令 certutil -hashfile 我记得-孙燕姿.mp3 MD5Linux中MD5计算 md5sum 我记得-孙燕姿.mp3

离线编译安装opencv库及多版本切换[ubuntu]

系统版本&#xff1a;ubuntu18.04 库版本&#xff1a;opencv4.6.0 & opencv3.6.0 一、多版本安装前准备 1. 卸载已经安装的opencv版本[可选] 1.1 卸载从软件仓库中安装的opencv sudo apt-get purge libopencv* 1.2 卸载使用source自行编译安装的opencv 首先进入原先编译…

Event事件的整理

很久没去看thinkphp框架文档&#xff0c;结果看到有更新到8.0版本。 好奇去下载框架运行&#xff0c; 好在我电脑都有运行的PHP版本是8.1多&#xff0c;拿捏这个新出的think 今天摸索event的这个事件功能&#xff0c; 文档的介绍是这样&#xff1a; (省略几十字)&#xff0…

《面向机器学习的数据标注规程》摘录

说明&#xff1a;本文使用的标准是2019年的团体标准&#xff0c;最新的国家标准已在2023年发布。 3 术语和定义 3.2 标签 label 标识数据的特征、类别和属性等。 3.4 数据标注员 data labeler 对待标注数据进行整理、纠错、标记和批注等操作的工作人员。 【批注】按照定义…

【已解决】ModuleNotFoundError: No module named ‘tensorflow‘

问题描述 Traceback (most recent call last): File "dataset_tool.py", line 16, in <module> import tensorflow as tf ModuleNotFoundError: No module named tensorflow 如果直接pip install tensorflow&#xff0c;还会报错 解决办法 方法一 pip i…

redis未授权漏洞复现

什么是redis redis就是个数据库&#xff0c;跟mysql不同的地方在于redis主要将数据存在内存中&#xff0c;读写速度非常快 redis未授权 其原因很简单&#xff0c;就是redis服务器在默认安装好不配置的情况下可以直接免密码登录&#xff0c;登录后在web目录写入一句话木马&am…

前端设计模式之旅:命令模式

引言 使用命令模式&#xff0c;我们可以将执行特定任务的对象与调用该方法的对象解耦。 核心思想 命令模式的核心思想是将请求封装成一个对象&#xff0c;从而使请求的发起者和请求的执行者解耦。 请求的发起者只需要知道如何创建命令对象并将其传递给请求者&#xff0c;而不需…

极坐标下的牛拉法潮流计算57节点MATLAB程序

微❤关注“电气仔推送”获得资料&#xff08;专享优惠&#xff09; 潮流计算&#xff1a; 潮流计算是根据给定的电网结构、参数和发电机、负荷等元件的运行条件&#xff0c;确定电力系统各部分稳态运行状态参数的计算。通常给定的运行条件有系统中各电源和负荷点的功率、枢纽…

贪心算法:买卖股票的最佳时机II 跳跃游戏 跳跃游戏II

122.买卖股票的最佳时机II 思路&#xff1a; 想要获得利润&#xff0c;至少要以两天为一个交易单元&#xff0c;因为两天才会有股价差。因此可以将最终利润进行分解&#xff0c;如prices[3] - prices[0] (prices[3] - prices[2]) (prices[2] - prices[1]) (prices[1] - pr…

【Mars3d-ModelEntity】实现gltf模型不随地图缩放而改变大小

需求场景&#xff1a; 1.实现gltf模型不随地图缩放而改变大小 相关代码&#xff1a; const graphic new mars3d.graphic.ModelEntity({ name: "警车", position: [116.346929, 30.861947, 401.34], style: { url: "//data.mars3d.cn/gltf/mars/jingche/jingc…

python界面开发,使用wxpython库

入门学习Python时&#xff0c;使从接触一个项目开始&#xff0c;当时需要我开发一个界面&#xff0c;当时综合考量之后&#xff0c;最终选择了今天要分享的内容部分&#xff0c;也就是使用Python来开发&#xff0c;主要使用到的是Python库——wxPython库来进行界面开发&#xf…

论文阅读:Lidar Annotation Is All You Need

目录 概要 Motivation 整体架构流程 技术细节 小结 概要 论文重点在探讨利用点云的地面分割任务作为标注&#xff0c;直接训练Camera的精细2D分割。在以往的地面分割任务中&#xff0c;利用Lidar来做地面分割是目前采用激光雷达方案进行自动驾驶的常见手段。来自Evocargo …