深度学习 Day16——P5运动鞋识别

  • 🍨 本文为🔗365天深度学习训练营 中的学习记录博客
  • 🍖 原作者:K同学啊 | 接辅导、项目定制

文章目录

  • 前言
  • 1 我的环境
  • 2 代码实现与执行结果
    • 2.1 前期准备
      • 2.1.1 引入库
      • 2.1.2 设置GPU(如果设备上支持GPU就使用GPU,否则使用CPU)
      • 2.1.3 导入数据
      • 2.1.4 可视化数据
      • 2.1.4 图像数据变换
      • 2.1.4 加载数据
      • 2.1.4 查看数据
    • 2.2 构建CNN网络模型
    • 2.3 训练模型
      • 2.3.1 设置超参数
      • 2.3.2 编写训练函数
      • 2.3.3 编写测试函数
      • 2.3.4 正式训练
    • 2.4 结果可视化
    • 2.4 指定图片进行预测
    • 2.6 保存并加载模型
  • 3 知识点详解
    • 3.1 torch动态学习率
      • 3.1.1 torch.optim.lr_scheduler.StepLR
      • 3.1.2 lr_scheduler.LambdaLR
      • 3.1.3 lr_scheduler.MultiStepLR
    • 3.2 拔高尝试
  • 总结


前言

本文将采用pytorch框架创建CNN网络,实现运动鞋识别。讲述实现代码与执行结果,并浅谈涉及知识点。
关键字:torch动态学习率

1 我的环境

  • 电脑系统:Windows 11
  • 语言环境:python 3.8.6
  • 编译器:pycharm2020.2.3
  • 深度学习环境:
    torch == 1.9.1+cu111
    torchvision == 0.10.1+cu111
  • 显卡:NVIDIA GeForce RTX 4070

2 代码实现与执行结果

2.1 前期准备

2.1.1 引入库

import torch
import torch.nn as nn
from torchvision import transforms, datasets
import time
from pathlib import Path
from PIL import Image
from torchinfo import summary
import torch.nn.functional as F
import matplotlib.pyplot as pltplt.rcParams['font.sans-serif'] = ['SimHei']  # 用来正常显示中文标签
plt.rcParams['axes.unicode_minus'] = False  # 用来正常显示负号
plt.rcParams['figure.dpi'] = 100  # 分辨率
import warningswarnings.filterwarnings('ignore')  # 忽略一些warning内容,无需打印

2.1.2 设置GPU(如果设备上支持GPU就使用GPU,否则使用CPU)

"""前期准备-设置GPU"""
# 如果设备上支持GPU就使用GPU,否则使用CPUdevice = torch.device("cuda" if torch.cuda.is_available() else "cpu")print("Using {} device".format(device))

输出

Using cuda device

2.1.3 导入数据

'''前期工作-导入数据'''
data_dir = r"D:\DeepLearning\data\monkeypox_recognition"
data_dir = Path(data_dir)data_paths = list(data_dir.glob('./train/*'))classeNames = [str(path).split("\\")[-1] for path in data_paths]print(classeNames)

输出

['adidas', 'nike']

2.1.4 可视化数据

'''前期工作-可视化数据'''
subfolder = Path(data_dir)/"train"/"nike"
image_files = list(p.resolve() for p in subfolder.glob('*') if p.suffix in [".jpg", ".png", ".jpeg"])
plt.figure(figsize=(10, 6))
for i in range(len(image_files[:12])):image_file = image_files[i]ax = plt.subplot(3, 4, i + 1)img = Image.open(str(image_file))plt.imshow(img)plt.axis("off")
# 显示图片
plt.tight_layout()
plt.show()

在这里插入图片描述

2.1.4 图像数据变换

'''前期工作-图像数据变换'''# 关于transforms.Compose的更多介绍可以参考:https://blog.csdn.net/qq_38251616/article/details/124878863train_transforms = transforms.Compose([transforms.Resize([224, 224]),  # 将输入图片resize成统一尺寸# transforms.RandomHorizontalFlip(), # 随机水平翻转transforms.ToTensor(),  # 将PIL Image或numpy.ndarray转换为tensor,并归一化到[0,1]之间transforms.Normalize(  # 标准化处理-->转换为标准正太分布(高斯分布),使模型更容易收敛mean=[0.485, 0.456, 0.406],std=[0.229, 0.224, 0.225])  # 其中 mean=[0.485,0.456,0.406]与std=[0.229,0.224,0.225] 从数据集中随机抽样计算得到的。])test_transform = transforms.Compose([transforms.Resize([224, 224]),  # 将输入图片resize成统一尺寸transforms.ToTensor(),  # 将PIL Image或numpy.ndarray转换为tensor,并归一化到[0,1]之间transforms.Normalize(  # 标准化处理-->转换为标准正太分布(高斯分布),使模型更容易收敛mean=[0.485, 0.456, 0.406],std=[0.229, 0.224, 0.225])  # 其中 mean=[0.485,0.456,0.406]与std=[0.229,0.224,0.225] 从数据集中随机抽样计算得到的。])train_dataset = datasets.ImageFolder(Path(data_dir)/"train", transform=train_transforms)test_dataset = datasets.ImageFolder(Path(data_dir)/"test", transform=train_transforms)print(train_dataset.class_to_idx)

输出

{'adidas': 0, 'nike': 1}

2.1.4 加载数据

'''前期工作-加载数据'''
batch_size = 32train_dl = torch.utils.data.DataLoader(train_dataset,batch_size=batch_size,shuffle=True,num_workers=1)
test_dl = torch.utils.data.DataLoader(test_dataset,batch_size=batch_size,shuffle=True,num_workers=1)

2.1.4 查看数据

'''前期工作-查看数据'''
for X, y in test_dl:print("Shape of X [N, C, H, W]: ", X.shape)print("Shape of y: ", y.shape, y.dtype)break

输出

Shape of X [N, C, H, W]:  torch.Size([32, 3, 224, 224])
Shape of y:  torch.Size([32]) torch.int64

2.2 构建CNN网络模型

在这里插入图片描述

"""构建CNN网络"""
class Network_bn(nn.Module):def __init__(self):super(Network_bn, self).__init__()"""nn.Conv2d()函数:第一个参数(in_channels)是输入的channel数量第二个参数(out_channels)是输出的channel数量第三个参数(kernel_size)是卷积核大小第四个参数(stride)是步长,默认为1第五个参数(padding)是填充大小,默认为0"""self.conv1 = nn.Conv2d(in_channels=3, out_channels=12, kernel_size=5, stride=1, padding=0)self.bn1 = nn.BatchNorm2d(12)self.conv2 = nn.Conv2d(in_channels=12, out_channels=12, kernel_size=5, stride=1, padding=0)self.bn2 = nn.BatchNorm2d(12)self.pool = nn.MaxPool2d(2, 2)self.conv4 = nn.Conv2d(in_channels=12, out_channels=24, kernel_size=5, stride=1, padding=0)self.bn4 = nn.BatchNorm2d(24)self.conv5 = nn.Conv2d(in_channels=24, out_channels=24, kernel_size=5, stride=1, padding=0)self.bn5 = nn.BatchNorm2d(24)self.fc1 = nn.Linear(24 * 50 * 50, len(classeNames))def forward(self, x):x = F.relu(self.bn1(self.conv1(x)))x = F.relu(self.bn2(self.conv2(x)))x = self.pool(x)x = F.relu(self.bn4(self.conv4(x)))x = F.relu(self.bn5(self.conv5(x)))x = self.pool(x)x = x.view(-1, 24 * 50 * 50)x = self.fc1(x)return xmodel = Network_bn().to(device)
print(model)   

输出

Network_bn((conv1): Conv2d(3, 12, kernel_size=(5, 5), stride=(1, 1))(bn1): BatchNorm2d(12, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)(conv2): Conv2d(12, 12, kernel_size=(5, 5), stride=(1, 1))(bn2): BatchNorm2d(12, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)(pool): MaxPool2d(kernel_size=2, stride=2, padding=0, dilation=1, ceil_mode=False)(conv4): Conv2d(12, 24, kernel_size=(5, 5), stride=(1, 1))(bn4): BatchNorm2d(24, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)(conv5): Conv2d(24, 24, kernel_size=(5, 5), stride=(1, 1))(bn5): BatchNorm2d(24, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)(fc1): Linear(in_features=60000, out_features=2, bias=True)
)

2.3 训练模型

2.3.1 设置超参数

"""训练模型--设置超参数"""
loss_fn = nn.CrossEntropyLoss()  # 创建损失函数,计算实际输出和真实相差多少,交叉熵损失函数,事实上,它就是做图片分类任务时常用的损失函数
learn_rate = 1e-4  # 学习率
optimizer1 = torch.optim.SGD(model.parameters(), lr=learn_rate)# 作用是定义优化器,用来训练时候优化模型参数;其中,SGD表示随机梯度下降,用于控制实际输出y与真实y之间的相差有多大
optimizer2 = torch.optim.Adam(model.parameters(), lr=learn_rate)
#测试集acc 84.2%
lr_opt = optimizer1
model_opt = optimizer1

2.3.2 编写训练函数

"""训练模型--编写训练函数"""
# 训练循环
def train(dataloader, model, loss_fn, optimizer):size = len(dataloader.dataset)  # 训练集的大小,一共60000张图片num_batches = len(dataloader)  # 批次数目,1875(60000/32)train_loss, train_acc = 0, 0  # 初始化训练损失和正确率for X, y in dataloader:  # 加载数据加载器,得到里面的 X(图片数据)和 y(真实标签)X, y = X.to(device), y.to(device) # 用于将数据存到显卡# 计算预测误差pred = model(X)  # 网络输出loss = loss_fn(pred, y)  # 计算网络输出和真实值之间的差距,targets为真实值,计算二者差值即为损失# 反向传播optimizer.zero_grad()  # 清空过往梯度loss.backward()  # 反向传播,计算当前梯度optimizer.step()  # 根据梯度更新网络参数# 记录acc与losstrain_acc += (pred.argmax(1) == y).type(torch.float).sum().item()train_loss += loss.item()train_acc /= sizetrain_loss /= num_batchesreturn train_acc, train_loss

2.3.3 编写测试函数

"""训练模型--编写测试函数"""
# 测试函数和训练函数大致相同,但是由于不进行梯度下降对网络权重进行更新,所以不需要传入优化器
def test(dataloader, model, loss_fn):size = len(dataloader.dataset)  # 测试集的大小,一共10000张图片num_batches = len(dataloader)  # 批次数目,313(10000/32=312.5,向上取整)test_loss, test_acc = 0, 0# 当不进行训练时,停止梯度更新,节省计算内存消耗with torch.no_grad(): # 测试时模型参数不用更新,所以 no_grad,整个模型参数正向推就ok,不反向更新参数for imgs, target in dataloader:imgs, target = imgs.to(device), target.to(device)# 计算losstarget_pred = model(imgs)loss = loss_fn(target_pred, target)test_loss += loss.item()test_acc += (target_pred.argmax(1) == target).type(torch.float).sum().item()#统计预测正确的个数test_acc /= sizetest_loss /= num_batchesreturn test_acc, test_loss

2.3.4 正式训练

 """训练模型--正式训练"""epochs = 40train_loss = []train_acc = []test_loss = []test_acc = []best_test_acc=0PATH = './model.pth'  # 保存的参数文件名for epoch in range(epochs):milliseconds_t1 = int(time.time() * 1000)# 更新学习率(使用自定义学习率时使用)adjust_learning_rate(lr_opt, epoch, learn_rate)model.train()epoch_train_acc, epoch_train_loss = train(train_dl, model, loss_fn, model_opt)# scheduler.step() # 更新学习率(调用官方动态学习率接口时使用)model.eval()epoch_test_acc, epoch_test_loss = test(test_dl, model, loss_fn)train_acc.append(epoch_train_acc)train_loss.append(epoch_train_loss)test_acc.append(epoch_test_acc)test_loss.append(epoch_test_loss)# 获取当前的学习率lr = lr_opt.state_dict()['param_groups'][0]['lr']milliseconds_t2 = int(time.time() * 1000)template = ('Epoch:{:2d}, duration:{}ms, Train_acc:{:.1f}%, Train_loss:{:.3f}, Test_acc:{:.1f}%,Test_loss:{:.3f}, Lr:{:.2E}')if best_test_acc < epoch_test_acc:best_test_acc = epoch_test_acc# 模型保存torch.save(model.state_dict(), PATH)template = ('Epoch:{:2d}, duration:{}ms, Train_acc:{:.1f}%, Train_loss:{:.3f}, Test_acc:{:.1f}%,Test_loss:{:.3f}, Lr:{:.2E},save model.pth')print(template.format(epoch + 1, milliseconds_t2-milliseconds_t1, epoch_train_acc * 100, epoch_train_loss, epoch_test_acc * 100, epoch_test_loss, lr))print('Done')

输出

Epoch: 1, duration:5323ms, Train_acc:52.2%, Train_loss:0.745, Test_acc:50.0%,Test_loss:0.700, Lr:1.00E-04,save model.pth
Epoch: 2, duration:3125ms, Train_acc:62.9%, Train_loss:0.651, Test_acc:57.9%,Test_loss:0.667, Lr:1.00E-04,save model.pth
Epoch: 3, duration:3130ms, Train_acc:66.9%, Train_loss:0.614, Test_acc:67.1%,Test_loss:0.584, Lr:9.20E-05,save model.pth
Epoch: 4, duration:3136ms, Train_acc:70.5%, Train_loss:0.567, Test_acc:72.4%,Test_loss:0.568, Lr:9.20E-05,save model.pth
Epoch: 5, duration:3346ms, Train_acc:76.1%, Train_loss:0.531, Test_acc:72.4%,Test_loss:0.537, Lr:8.46E-05
Epoch: 6, duration:3087ms, Train_acc:77.5%, Train_loss:0.510, Test_acc:72.4%,Test_loss:0.531, Lr:8.46E-05
Epoch: 7, duration:3215ms, Train_acc:77.7%, Train_loss:0.492, Test_acc:78.9%,Test_loss:0.511, Lr:7.79E-05,save model.pth
Epoch: 8, duration:3520ms, Train_acc:82.3%, Train_loss:0.467, Test_acc:77.6%,Test_loss:0.504, Lr:7.79E-05
Epoch: 9, duration:3662ms, Train_acc:83.1%, Train_loss:0.442, Test_acc:81.6%,Test_loss:0.494, Lr:7.16E-05,save model.pth
Epoch:10, duration:3410ms, Train_acc:85.7%, Train_loss:0.427, Test_acc:80.3%,Test_loss:0.464, Lr:7.16E-05
Epoch:11, duration:3486ms, Train_acc:86.3%, Train_loss:0.413, Test_acc:81.6%,Test_loss:0.469, Lr:6.59E-05
Epoch:12, duration:3356ms, Train_acc:87.6%, Train_loss:0.394, Test_acc:78.9%,Test_loss:0.452, Lr:6.59E-05
Epoch:13, duration:3453ms, Train_acc:87.6%, Train_loss:0.391, Test_acc:81.6%,Test_loss:0.494, Lr:6.06E-05
Epoch:14, duration:3226ms, Train_acc:87.8%, Train_loss:0.385, Test_acc:80.3%,Test_loss:0.450, Lr:6.06E-05
Epoch:15, duration:3290ms, Train_acc:89.0%, Train_loss:0.368, Test_acc:82.9%,Test_loss:0.486, Lr:5.58E-05,save model.pth
Epoch:16, duration:3247ms, Train_acc:90.4%, Train_loss:0.359, Test_acc:81.6%,Test_loss:0.443, Lr:5.58E-05
Epoch:17, duration:3195ms, Train_acc:90.6%, Train_loss:0.358, Test_acc:81.6%,Test_loss:0.452, Lr:5.13E-05
Epoch:18, duration:3294ms, Train_acc:90.6%, Train_loss:0.342, Test_acc:82.9%,Test_loss:0.436, Lr:5.13E-05
Epoch:19, duration:3305ms, Train_acc:91.2%, Train_loss:0.338, Test_acc:81.6%,Test_loss:0.452, Lr:4.72E-05
Epoch:20, duration:3241ms, Train_acc:91.8%, Train_loss:0.332, Test_acc:81.6%,Test_loss:0.418, Lr:4.72E-05
Epoch:21, duration:3371ms, Train_acc:93.0%, Train_loss:0.320, Test_acc:81.6%,Test_loss:0.459, Lr:4.34E-05
Epoch:22, duration:3279ms, Train_acc:92.8%, Train_loss:0.317, Test_acc:81.6%,Test_loss:0.475, Lr:4.34E-05
Epoch:23, duration:3279ms, Train_acc:93.4%, Train_loss:0.310, Test_acc:82.9%,Test_loss:0.438, Lr:4.00E-05
Epoch:24, duration:3225ms, Train_acc:93.0%, Train_loss:0.313, Test_acc:81.6%,Test_loss:0.437, Lr:4.00E-05
Epoch:25, duration:3293ms, Train_acc:94.0%, Train_loss:0.304, Test_acc:81.6%,Test_loss:0.439, Lr:3.68E-05
Epoch:26, duration:3273ms, Train_acc:94.0%, Train_loss:0.297, Test_acc:81.6%,Test_loss:0.414, Lr:3.68E-05
Epoch:27, duration:3249ms, Train_acc:94.2%, Train_loss:0.296, Test_acc:80.3%,Test_loss:0.413, Lr:3.38E-05
Epoch:28, duration:3266ms, Train_acc:94.8%, Train_loss:0.288, Test_acc:84.2%,Test_loss:0.425, Lr:3.38E-05,save model.pth
Epoch:29, duration:3248ms, Train_acc:94.4%, Train_loss:0.288, Test_acc:81.6%,Test_loss:0.400, Lr:3.11E-05
Epoch:30, duration:3243ms, Train_acc:94.6%, Train_loss:0.291, Test_acc:81.6%,Test_loss:0.445, Lr:3.11E-05
Epoch:31, duration:3250ms, Train_acc:96.4%, Train_loss:0.278, Test_acc:81.6%,Test_loss:0.465, Lr:2.86E-05
Epoch:32, duration:3193ms, Train_acc:95.2%, Train_loss:0.275, Test_acc:81.6%,Test_loss:0.438, Lr:2.86E-05
Epoch:33, duration:3283ms, Train_acc:95.2%, Train_loss:0.270, Test_acc:81.6%,Test_loss:0.402, Lr:2.63E-05
Epoch:34, duration:3542ms, Train_acc:94.8%, Train_loss:0.280, Test_acc:81.6%,Test_loss:0.407, Lr:2.63E-05
Epoch:35, duration:3592ms, Train_acc:95.8%, Train_loss:0.269, Test_acc:81.6%,Test_loss:0.442, Lr:2.42E-05
Epoch:36, duration:3592ms, Train_acc:95.4%, Train_loss:0.267, Test_acc:80.3%,Test_loss:0.413, Lr:2.42E-05
Epoch:37, duration:3588ms, Train_acc:95.0%, Train_loss:0.265, Test_acc:81.6%,Test_loss:0.432, Lr:2.23E-05
Epoch:38, duration:3736ms, Train_acc:95.0%, Train_loss:0.267, Test_acc:81.6%,Test_loss:0.438, Lr:2.23E-05
Epoch:39, duration:3431ms, Train_acc:95.2%, Train_loss:0.265, Test_acc:82.9%,Test_loss:0.400, Lr:2.05E-05
Epoch:40, duration:3417ms, Train_acc:95.8%, Train_loss:0.270, Test_acc:81.6%,Test_loss:0.379, Lr:2.05E-05
Done

2.4 结果可视化

"""训练模型--结果可视化"""
epochs_range = range(epochs)plt.figure(figsize=(12, 3))
plt.subplot(1, 2, 1)plt.plot(epochs_range, train_acc, label='Training Accuracy')
plt.plot(epochs_range, test_acc, label='Test Accuracy')
plt.legend(loc='lower right')
plt.title('Training and Validation Accuracy')plt.subplot(1, 2, 2)
plt.plot(epochs_range, train_loss, label='Training Loss')
plt.plot(epochs_range, test_loss, label='Test Loss')
plt.legend(loc='upper right')
plt.title('Training and Validation Loss')
plt.show()

在这里插入图片描述

2.4 指定图片进行预测

def predict_one_image(image_path, model, transform, classes):test_img = Image.open(image_path).convert('RGB')plt.imshow(test_img)  # 展示预测的图片plt.show()test_img = transform(test_img)img = test_img.to(device).unsqueeze(0)model.eval()output = model(img)_, pred = torch.max(output, 1)pred_class = classes[pred]print(f'预测结果是:{pred_class}')"""指定图片进行预测"""classes = list(total_data.class_to_idx)
# 预测训练集中的某张照片
predict_one_image(image_path=str(Path(data_dir)/"test/adidas/1.jpg"),model=model,transform=train_transforms,classes=classes)

如果使用效果最好的模型,就先加载保存好的模型,再调用预测代码

   # 将参数加载到model当中model.load_state_dict(torch.load(PATH, map_location=device))

输出

预测结果是:adidas

在这里插入图片描述

2.6 保存并加载模型

"""保存并加载模型"""
# 模型保存
PATH = './model.pth'  # 保存的参数文件名
torch.save(model.state_dict(), PATH)# 将参数加载到model当中
model.load_state_dict(torch.load(PATH, map_location=device))

3 知识点详解

3.1 torch动态学习率

3.1.1 torch.optim.lr_scheduler.StepLR

函数原型:

torch.optim.lr_scheduler.StepLR(optimizer, step_size, gamma=0.1, last_epoch=-1)

关键参数详解:

  • optimizer(Optimizer):是之前定义好的需要优化的优化器的实例名
  • step_size(int):是学习率衰减的周期,每经过每个epoch,做一次学习率decay
  • gamma(float):学习率衰减的乘法因子。Default:0.1

用法示例:

optimizer = torch.optim.SGD(net.parameters(), lr=0.001 )
scheduler = torch.optim.lr_scheduler.StepLR(optimizer, step_size=5, gamma=0.1)

3.1.2 lr_scheduler.LambdaLR

根据自己定义的函数更新学习率。
函数原型:

torch.optim.lr_scheduler.LambdaLR(optimizer, lr_lambda, last_epoch=-1, verbose=False)

关键参数详解:

  • optimizer(Optimizer):是之前定义好的需要优化的优化器的实例名
  • lr_lambda(function):更新学习率的函数
    用法示例:
lambda1 = lambda epoch: (0.92 ** (epoch // 2) # 第二组参数的调整方法
optimizer = torch.optim.SGD(model.parameters(), lr=learn_rate)
scheduler = torch.optim.lr_scheduler.LambdaLR(optimizer, lr_lambda=lambda1) #选定调整方法

3.1.3 lr_scheduler.MultiStepLR

在特定的 epoch 中调整学习率
函数原型:

torch.optim.lr_scheduler.MultiStepLR(optimizer, milestones, gamma=0.1, last_epoch=-1, verbose=False)

关键参数详解:

  • optimizer(Optimizer):是之前定义好的需要优化的优化器的实例名
  • milestones(list):是一个关于epoch数值的list,表示在达到哪个epoch范围内开始变化,必须是升序排列
  • gamma(float):学习率衰减的乘法因子。Default:0.1
    用法示例:
optimizer = torch.optim.SGD(net.parameters(), lr=0.001 )
scheduler = torch.optim.lr_scheduler.MultiStepLR(optimizer, milestones=[2,6,15], #调整学习率的epoch数gamma=0.1)

更多的官方动态学习率设置方式可参考:https://pytorch.org/docs/stable/optim.html
👉调用官方接口示例:

model = [Parameter(torch.randn(2, 2, requires_grad=True))]
optimizer = SGD(model, 0.1)
scheduler = ExponentialLR(optimizer, gamma=0.9)for epoch in range(20):for input, target in dataset:optimizer.zero_grad()output = model(input)loss = loss_fn(output, target)loss.backward()optimizer.step()scheduler.step()

3.2 拔高尝试

尝试变更dropout失活比例为0.5,测试集acc提升至86.8%,实际上也不能确定是因为变更比例导致的效果提升,因为每次运行效果都有不同,有好有坏。

Epoch: 1, duration:4820ms, Train_acc:53.6%, Train_loss:1.133, Test_acc:52.6%,Test_loss:0.712, Lr:1.00E-04,save model.pth
Epoch: 2, duration:3271ms, Train_acc:73.5%, Train_loss:0.547, Test_acc:59.2%,Test_loss:0.697, Lr:1.00E-04,save model.pth
Epoch: 3, duration:3566ms, Train_acc:81.5%, Train_loss:0.396, Test_acc:77.6%,Test_loss:0.485, Lr:9.20E-05,save model.pth
Epoch: 4, duration:3309ms, Train_acc:89.4%, Train_loss:0.287, Test_acc:77.6%,Test_loss:0.470, Lr:9.20E-05
Epoch: 5, duration:3411ms, Train_acc:94.2%, Train_loss:0.219, Test_acc:82.9%,Test_loss:0.418, Lr:8.46E-05,save model.pth
Epoch: 6, duration:3239ms, Train_acc:98.2%, Train_loss:0.172, Test_acc:81.6%,Test_loss:0.385, Lr:8.46E-05
Epoch: 7, duration:3282ms, Train_acc:98.8%, Train_loss:0.127, Test_acc:85.5%,Test_loss:0.374, Lr:7.79E-05,save model.pth
Epoch: 8, duration:3277ms, Train_acc:99.2%, Train_loss:0.115, Test_acc:82.9%,Test_loss:0.332, Lr:7.79E-05
Epoch: 9, duration:3440ms, Train_acc:99.6%, Train_loss:0.091, Test_acc:86.8%,Test_loss:0.356, Lr:7.16E-05,save model.pth
Epoch:10, duration:3570ms, Train_acc:100.0%, Train_loss:0.078, Test_acc:81.6%,Test_loss:0.411, Lr:7.16E-05
Epoch:11, duration:3418ms, Train_acc:99.6%, Train_loss:0.072, Test_acc:84.2%,Test_loss:0.370, Lr:6.59E-05
Epoch:12, duration:3291ms, Train_acc:100.0%, Train_loss:0.064, Test_acc:85.5%,Test_loss:0.339, Lr:6.59E-05
Epoch:13, duration:3273ms, Train_acc:100.0%, Train_loss:0.054, Test_acc:85.5%,Test_loss:0.321, Lr:6.06E-05
Epoch:14, duration:3365ms, Train_acc:100.0%, Train_loss:0.049, Test_acc:85.5%,Test_loss:0.336, Lr:6.06E-05
Epoch:15, duration:3321ms, Train_acc:100.0%, Train_loss:0.046, Test_acc:84.2%,Test_loss:0.311, Lr:5.58E-05
Epoch:16, duration:3273ms, Train_acc:100.0%, Train_loss:0.041, Test_acc:84.2%,Test_loss:0.336, Lr:5.58E-05
Epoch:17, duration:3315ms, Train_acc:100.0%, Train_loss:0.038, Test_acc:85.5%,Test_loss:0.350, Lr:5.13E-05
Epoch:18, duration:3380ms, Train_acc:100.0%, Train_loss:0.034, Test_acc:82.9%,Test_loss:0.314, Lr:5.13E-05
Epoch:19, duration:3275ms, Train_acc:100.0%, Train_loss:0.034, Test_acc:84.2%,Test_loss:0.378, Lr:4.72E-05
Epoch:20, duration:3264ms, Train_acc:100.0%, Train_loss:0.031, Test_acc:82.9%,Test_loss:0.342, Lr:4.72E-05
Epoch:21, duration:3267ms, Train_acc:100.0%, Train_loss:0.029, Test_acc:84.2%,Test_loss:0.299, Lr:4.34E-05
Epoch:22, duration:3243ms, Train_acc:100.0%, Train_loss:0.028, Test_acc:84.2%,Test_loss:0.320, Lr:4.34E-05
Epoch:23, duration:3319ms, Train_acc:100.0%, Train_loss:0.025, Test_acc:82.9%,Test_loss:0.335, Lr:4.00E-05
Epoch:24, duration:3230ms, Train_acc:100.0%, Train_loss:0.025, Test_acc:84.2%,Test_loss:0.351, Lr:4.00E-05
Epoch:25, duration:3251ms, Train_acc:100.0%, Train_loss:0.025, Test_acc:84.2%,Test_loss:0.329, Lr:3.68E-05
Epoch:26, duration:3275ms, Train_acc:100.0%, Train_loss:0.023, Test_acc:84.2%,Test_loss:0.304, Lr:3.68E-05
Epoch:27, duration:3244ms, Train_acc:100.0%, Train_loss:0.022, Test_acc:82.9%,Test_loss:0.324, Lr:3.38E-05
Epoch:28, duration:3319ms, Train_acc:100.0%, Train_loss:0.022, Test_acc:85.5%,Test_loss:0.308, Lr:3.38E-05
Epoch:29, duration:3287ms, Train_acc:100.0%, Train_loss:0.020, Test_acc:85.5%,Test_loss:0.353, Lr:3.11E-05
Epoch:30, duration:3230ms, Train_acc:100.0%, Train_loss:0.019, Test_acc:85.5%,Test_loss:0.346, Lr:3.11E-05
Epoch:31, duration:3285ms, Train_acc:100.0%, Train_loss:0.019, Test_acc:85.5%,Test_loss:0.335, Lr:2.86E-05
Epoch:32, duration:3255ms, Train_acc:100.0%, Train_loss:0.019, Test_acc:85.5%,Test_loss:0.337, Lr:2.86E-05
Epoch:33, duration:3307ms, Train_acc:100.0%, Train_loss:0.018, Test_acc:85.5%,Test_loss:0.334, Lr:2.63E-05
Epoch:34, duration:3281ms, Train_acc:100.0%, Train_loss:0.017, Test_acc:85.5%,Test_loss:0.323, Lr:2.63E-05
Epoch:35, duration:3249ms, Train_acc:100.0%, Train_loss:0.016, Test_acc:85.5%,Test_loss:0.314, Lr:2.42E-05
Epoch:36, duration:3287ms, Train_acc:100.0%, Train_loss:0.017, Test_acc:84.2%,Test_loss:0.368, Lr:2.42E-05
Epoch:37, duration:3337ms, Train_acc:100.0%, Train_loss:0.016, Test_acc:85.5%,Test_loss:0.328, Lr:2.23E-05
Epoch:38, duration:3367ms, Train_acc:100.0%, Train_loss:0.016, Test_acc:84.2%,Test_loss:0.375, Lr:2.23E-05
Epoch:39, duration:3244ms, Train_acc:100.0%, Train_loss:0.015, Test_acc:84.2%,Test_loss:0.329, Lr:2.05E-05
Epoch:40, duration:3277ms, Train_acc:100.0%, Train_loss:0.015, Test_acc:85.5%,Test_loss:0.295, Lr:2.05E-05

在这里插入图片描述

尝试变更学习率优化器及模型优化器为(SGD和Adam的四种组合),测试集acc几乎无变化
尝试变更初始学习率,尝试变更学习率不动态更新,测试集acc无提升

总结

通过本文学习到几种动态学习率的设置与调用,要想得到一个比较好的模型效果,对模型相关参数进行不同的尝试,获取一个相对适配该案例的参数。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/226009.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

【Qt QML 入门】TextArea

TextArea也是一个多行文本编辑器。TextArea相比texttedit&#xff0c;增加了占位符文本&#xff0c;并添加了样式定义。 import QtQuick import QtQuick.Window import QtQuick.ControlsWindow {id: winwidth: 800height: 600visible: trueTextArea {id: taanchors.centerIn: …

解决Visual Studio 各版本都出现新建项目后解决方案下没有文件和项目问题

一步一步创建C#控制台应用程序也会出错&#xff0c;这个你可能不会相信&#xff0c;我就遇到了这么一次&#xff0c;就在刚刚&#xff0c;是的&#xff0c;我都不敢相信&#xff0c;用了这么多年的新建一个控制台程序居然不正常了。新建完毕发现里面什么都没有&#xff0c;除了…

首发卡密引流系统源码

程序特色&#xff1a; 支持个人和企业小程序广告获取卡密。 支持短视频点赞和关注获取卡密。 搭建教程&#xff1a; 环境要求&#xff1a;Nginx、MySQL 5.6、PHP 5.6 步骤&#xff1a; 将压缩包解压至网站根目录。 打开域名/install&#xff0c;按照提示填写数据库信息进行…

JS对象循环引用的危害:你知道吗?

&#x1f90d; 前端开发工程师&#xff08;主业&#xff09;、技术博主&#xff08;副业&#xff09;、已过CET6 &#x1f368; 阿珊和她的猫_CSDN个人主页 &#x1f560; 牛客高级专题作者、在牛客打造高质量专栏《前端面试必备》 &#x1f35a; 蓝桥云课签约作者、已在蓝桥云…

移动端机器学习框架 MDL 简介与实践

Mobile-deep-learning&#xff08;MDL&#xff09; MDL 是百度研发的可以部署在移动端的基于卷积神经网络实现的移动端框架&#xff0c;可以应用在图像识别领域。 具体应用&#xff1a;在手机百度 App 中&#xff0c;用户只需要点击自动拍开关&#xff0c;将手机对准物体&…

联想王传东:AI PC迈入AI Ready 即将开启AI On

“AI PC已经正式迈入AI Ready 阶段&#xff0c;接下来会逐渐进入到AI On阶段。”12月16日&#xff0c;英特尔人工智能创新应用大赛启动仪式在深圳举办。作为独家AI PC合作伙伴&#xff0c;联想集团副总裁、中国区首席市场官王传东代表公司出席仪式并致辞。 王传东认为AI PC的发…

大模型Transformer 推理 :kvCache原理浅析

大模型Transformer 推理 :kvCache原理浅析 kvCache 原理 在采样时,Transformer模型会以给定的提示/上下文作为初始输入进行推理(可以并行处理),然后逐一生成额外的标记来继续完善生成的序列(体现了模型的自回归性质)。在采样过程中,Transformer会执行自注意力操作,为…

27系列DGUS智能屏发布:可实时播放高清模拟信号摄像头视频

针对高清晰度的模拟信号摄像头视频画面的显示需求&#xff0c;迪文特推出27系列DGUS智能屏。该系列智能屏可适配常见的AHD摄像头、CVBS摄像头&#xff0c;支持单路1080P高清显示、两路720P同屏显示&#xff08;同一类型摄像头&#xff09;。用户通过DGUS简单开发即可实现摄像头…

【送书活动】智能汽车、自动驾驶、车联网的发展趋势和关键技术

文章目录 前言01 《智能汽车》推荐语 02 《SoC底层软件低功耗系统设计与实现》推荐语 03 《SoC设计指南》推荐语 05 《智能汽车网络安全权威指南&#xff08;上册&#xff09;》推荐语 06 《智能汽车网络安全权威指南&#xff08;下册&#xff09;》推荐语 后记赠书活动 前言 …

mac安装pnpm与使用

1、什么是pnpm&#xff1f; pnpm 全称 performant npm&#xff0c;意思是高性能的 npm。pnpm 由 npm/yarn 衍生而来&#xff0c;解决了 npm/yarn 内部潜在的 bug&#xff0c;极大的优化了性能&#xff0c;扩展了使用场景。被誉为 “最先进的包管理工具”。 2、pnpm特点 速度…

虚拟机启动 I/O error in “xfs_read_agi+0x95“

1.在选择系统界面按e 进入维护模式 2.找到ro把ro改成 rw init/sysroot/bin/sh 然后按Ctrlx 3.找到坏掉的分区&#xff0c;以nvme0n1p3为例进行修复 xfs_repair -d /dev/nvme0n1p3 4.init 6 重新启动 以下情况 先umount 再修复 则修复成功

接口测试 — 4.Requests库GET、Post请求

Requests库GET请求是使用HTTP协议中的GET请求方式对目标网站发起请求。 &#xff08;不带参数的GET请求请看上一篇文章的练习&#xff09; 1、Requests库待参数的GET请求 使用Get方法带参数请求时&#xff0c;是params参数字典&#xff0c;而不是data参数字典。data参数字典…

dcoker-compose一键部署EFAK —— 筑梦之路

简介 EFAK&#xff08;Eagle For Apache Kafka&#xff0c;以前称为 Kafka Eagle&#xff09;是一款由国内公司开源的Kafka集群监控系统&#xff0c;可以用来监视kafka集群的broker状态、Topic信息、IO、内存、consumer线程、偏移量等信息&#xff0c;并进行可视化图表展示。独…

Arduino中以太网Udp通信

目录 1、测试硬件 2、程序 &#xff08;0&#xff09;头文件添加 &#xff08;1&#xff09;变量定义 &#xff08;2&#xff09;初始化程序 &#xff08;3&#xff09;循环执行程序 3、程序下载 &#xff08;1&#xff09;开发板控制器和端口号选择 &#xff08;2&am…

pycharm某个xxx.sh文件显示问号,无法编辑

文章目录 pycharm某个xxx.sh文件显示问号,无法编辑其他参考 pycharm某个xxx.sh文件显示问号,无法编辑 问题描述&#xff1a;pycharm某个xxx.sh文件显示问号,无法编辑 问题分析&#xff1a; pycharm无法识别文件类型。 问题解决&#xff1a; 在pycharm中选中该文件&#xff0…

BugKu-Web-滑稽

题目环境 持续的动态图片 F12审查元素 拿下flag&#xff1a;flag{595d994a34342417bfc3a3c3a23e0a48}

synchronized关键字的使用和原理

synchronized关键字的使用和原理 synchronized&#xff1a;对象锁&#xff0c;保证了临界区内代码的原子性&#xff0c;采用互斥的方式让同一时刻至多只有一个线程能持有对象锁&#xff0c;其它线程获取这个对象锁时会阻塞&#xff0c;保证拥有锁的线程可以安全的执行临界区内…

【Android】MVC与MVP的区别,MVP网络请求实践

一、MVC模式 目录 一、MVC模式二、MVP模式 1、MVP的简单应用 1.1 导入相关依赖包并设置权限1.2 实现Model1.2 实现Presenter1.3 实现View1.4分析项目结构和绑定过程1.5效果展示 2、MVP结合RxJava 一、MVC模式 MVC&#xff08;Model(模型)——View(视图)——Controller(控制…

设计模式-状态(State)模式

目录 开发过程中的一些场景 状态模式的简单介绍 状态模式UML类图 类图讲解 适用场景 Java中的例子 案例讲解 什么是状态机 如何实现状态机 SpringBoot状态自动机 优点 缺点 与其他模式的区别 小结 开发过程中的一些场景 我们在平时的开发过程中&#xff0c;经常会…

【Android】在Android上使用mlKit构建人脸检测程序

在Android上构建人脸检测程序 目录 1、导入mlKit依赖包2、配置人脸检测器并且获取人脸检测器3、加载图片资源4、调用人脸检测器5、绘制矩形边框6、完整代码7、效果展示 1、导入mlKit依赖包 dependencies {// ...// Use this dependency to bundle the model with your appi…