移动端机器学习框架 MDL 简介与实践

Mobile-deep-learningMDL

MDL 是百度研发的可以部署在移动端的基于卷积神经网络实现的移动端框架,可以应用在图像识别领域。

具体应用:在手机百度 App 中,用户只需要点击自动拍开关,将手机对准物体,当手稳的时候,它会自动找到物体并进行框选,无需拍照就可以发起图像的搜索功能。

初识 MDL

运行示例程序

  1. clone 项目代码,GitHub - PaddlePaddle/Paddle-Lite: PaddlePaddle High Performance Deep Learning Inference Engine for Mobile and Edge (飞桨高性能深度学习端侧推理引擎) 
  2.  IDE 中导入 example 

  1. 运行

开发要求

  1. 安装 NDK
  2. 安装 Cmake
  3. 安装 protocol buffers

使用 MDL 库

  1. 在 mac/linux 上执行测试

# mac or linux:

./build.sh mac

cd build/release/x86/build

./mdlTest

  1. 在项目中使用mdl

开发

  1. 编译MDL源码(Android

# android:

# prerequisite: install ndk from google

./build.sh android

 cd build/release/armv-v7a/build

./deploy_android.sh

adb shell

cd /data/local/tmp

./mdlTest

  1. iOS

# ios:

# prerequisite: install xcode from apple

./build.sh ios

copy ./build/release/ios/build/libmdl-static.a to your iOS project

模型转换

MDL 需要与之兼容的模型才能使用,可以使用 MDL 提供的脚本将其他深度学习工具训练的模型转换为 MDL 模型。推荐使用 PaddlePaddle 模型。

  1. 将 PaddlePaddle 模型转换成 MDL 模式

# Environmental requirements

# paddlepaddle

cd tools/python

python paddle2mdl.py

  1. 将 caffemodel 模型转换成 MDL 模式

#Convert model.prototxt and model.caffemodel to model.min.json and data.min.bin that mdl use

./build.sh mac

cd ./build/release/x86/tools/build

# copy your model.prototxt and model.caffemodel to this path

./caffe2mdl model.prototxt model.caffemodel

# the third para is optional, if you want to test the model produced by this script, provide color value array of an image as the third parameter ,like this:

./caffe2mdl model.prototxt model.caffemodel data

# the color value should in order of rgb,and transformed according to the model.

# then you will get a new data.min.bin with test data inside

# after this command, model.min.json data.min.bin will be created in current

# some difference step you need to do if you convert caffe model to iOS GPU format

# see this:

open iOS/convert/iOSConvertREADME.md

Android Sample 分析

下面以 Android 平台为例分析 MDL 在移动端平台上面的工作

  1. 在项目中导入 libmdl.so 
  2. 初始化 mdl,加载 so 库,设置线程数量

private void initMDL() {

     String assetPath = "mdl_demo";

     String sdcardPath = Environment.getExternalStorageDirectory()

             + File.separator + assetPath;

     copyFilesFromAssets(this, assetPath, sdcardPath);

     mdlSolver = new MDL();

     try {

         String jsonPath = sdcardPath + File.separator + type.name()

                 + File.separator + "model.min.json";

         String weightsPath = sdcardPath + File.separator + type.name()

                 + File.separator + "data.min.bin";

         Log.d("mdl","mdl load "+ jsonPath + "weightpath ="+weightsPath);

         mdlSolver.load(jsonPath, weightsPath);

         if (type == mobilenet) {

             mdlSolver.setThreadNum(1);

         } else {

             mdlSolver.setThreadNum(3);

         }

     } catch (MDLException e) {

         e.printStackTrace();

     }

 }

  1. 拍摄照片

Intent intent = new Intent(MediaStore.ACTION_IMAGE_CAPTURE);

// save pic in sdcard 

Uri imageUri = Uri.fromFile(getTempImage());

intent.putExtra(MediaStore.EXTRA_OUTPUT, imageUri);

startActivityForResult(intent, TAKE_PHOTO_REQUEST_CODE);

  1. 图像处理,包括设置采样率图像缩放
  2. 图像预测

mdlSolver.predictImage(inputData);

  1. 在MDL库中,predictImage 方法是进行图像预测的 JNI 方法。方法声明如下:

JNIEXPORT jfloatArray JNICALL Java_com_baidu_mdl_demo_MDL_predictImage(JNIEnv *env, jclass thiz, jfloatArray buf)

这里需要传入图像的3维数组结构,真正执行预测的是 Net#predict(data) 方法,Net 模块是 MDL 网络管理模块,主要负责网络中各层 Layer 的初始化及管理工作。开发者在调用预测方法的时候,只需要调用对应 java  predictImage 方法,传入图像数据即可。

  1. 预测完成,在 demo 的界面中返回预测耗时和结果。

性能和兼容性

总结

MDL 在 Android  iOS 系统上性能表现十分出色,并且 API 设计也很简单易用,也支持其他的框架模型转换。总体来讲是一个非常优秀的移动端深度学习框架。

参考:

https://github.com/baidu/mobile-deep-learning

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/226001.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

联想王传东:AI PC迈入AI Ready 即将开启AI On

“AI PC已经正式迈入AI Ready 阶段,接下来会逐渐进入到AI On阶段。”12月16日,英特尔人工智能创新应用大赛启动仪式在深圳举办。作为独家AI PC合作伙伴,联想集团副总裁、中国区首席市场官王传东代表公司出席仪式并致辞。 王传东认为AI PC的发…

大模型Transformer 推理 :kvCache原理浅析

大模型Transformer 推理 :kvCache原理浅析 kvCache 原理 在采样时,Transformer模型会以给定的提示/上下文作为初始输入进行推理(可以并行处理),然后逐一生成额外的标记来继续完善生成的序列(体现了模型的自回归性质)。在采样过程中,Transformer会执行自注意力操作,为…

27系列DGUS智能屏发布:可实时播放高清模拟信号摄像头视频

针对高清晰度的模拟信号摄像头视频画面的显示需求,迪文特推出27系列DGUS智能屏。该系列智能屏可适配常见的AHD摄像头、CVBS摄像头,支持单路1080P高清显示、两路720P同屏显示(同一类型摄像头)。用户通过DGUS简单开发即可实现摄像头…

【送书活动】智能汽车、自动驾驶、车联网的发展趋势和关键技术

文章目录 前言01 《智能汽车》推荐语 02 《SoC底层软件低功耗系统设计与实现》推荐语 03 《SoC设计指南》推荐语 05 《智能汽车网络安全权威指南(上册)》推荐语 06 《智能汽车网络安全权威指南(下册)》推荐语 后记赠书活动 前言 …

mac安装pnpm与使用

1、什么是pnpm? pnpm 全称 performant npm,意思是高性能的 npm。pnpm 由 npm/yarn 衍生而来,解决了 npm/yarn 内部潜在的 bug,极大的优化了性能,扩展了使用场景。被誉为 “最先进的包管理工具”。 2、pnpm特点 速度…

虚拟机启动 I/O error in “xfs_read_agi+0x95“

1.在选择系统界面按e 进入维护模式 2.找到ro把ro改成 rw init/sysroot/bin/sh 然后按Ctrlx 3.找到坏掉的分区,以nvme0n1p3为例进行修复 xfs_repair -d /dev/nvme0n1p3 4.init 6 重新启动 以下情况 先umount 再修复 则修复成功

接口测试 — 4.Requests库GET、Post请求

Requests库GET请求是使用HTTP协议中的GET请求方式对目标网站发起请求。 (不带参数的GET请求请看上一篇文章的练习) 1、Requests库待参数的GET请求 使用Get方法带参数请求时,是params参数字典,而不是data参数字典。data参数字典…

dcoker-compose一键部署EFAK —— 筑梦之路

简介 EFAK(Eagle For Apache Kafka,以前称为 Kafka Eagle)是一款由国内公司开源的Kafka集群监控系统,可以用来监视kafka集群的broker状态、Topic信息、IO、内存、consumer线程、偏移量等信息,并进行可视化图表展示。独…

Arduino中以太网Udp通信

目录 1、测试硬件 2、程序 (0)头文件添加 (1)变量定义 (2)初始化程序 (3)循环执行程序 3、程序下载 (1)开发板控制器和端口号选择 (2&am…

pycharm某个xxx.sh文件显示问号,无法编辑

文章目录 pycharm某个xxx.sh文件显示问号,无法编辑其他参考 pycharm某个xxx.sh文件显示问号,无法编辑 问题描述:pycharm某个xxx.sh文件显示问号,无法编辑 问题分析: pycharm无法识别文件类型。 问题解决: 在pycharm中选中该文件&#xff0…

BugKu-Web-滑稽

题目环境 持续的动态图片 F12审查元素 拿下flag:flag{595d994a34342417bfc3a3c3a23e0a48}

synchronized关键字的使用和原理

synchronized关键字的使用和原理 synchronized:对象锁,保证了临界区内代码的原子性,采用互斥的方式让同一时刻至多只有一个线程能持有对象锁,其它线程获取这个对象锁时会阻塞,保证拥有锁的线程可以安全的执行临界区内…

【Android】MVC与MVP的区别,MVP网络请求实践

一、MVC模式 目录 一、MVC模式二、MVP模式 1、MVP的简单应用 1.1 导入相关依赖包并设置权限1.2 实现Model1.2 实现Presenter1.3 实现View1.4分析项目结构和绑定过程1.5效果展示 2、MVP结合RxJava 一、MVC模式 MVC(Model(模型)——View(视图)——Controller(控制…

设计模式-状态(State)模式

目录 开发过程中的一些场景 状态模式的简单介绍 状态模式UML类图 类图讲解 适用场景 Java中的例子 案例讲解 什么是状态机 如何实现状态机 SpringBoot状态自动机 优点 缺点 与其他模式的区别 小结 开发过程中的一些场景 我们在平时的开发过程中,经常会…

【Android】在Android上使用mlKit构建人脸检测程序

在Android上构建人脸检测程序 目录 1、导入mlKit依赖包2、配置人脸检测器并且获取人脸检测器3、加载图片资源4、调用人脸检测器5、绘制矩形边框6、完整代码7、效果展示 1、导入mlKit依赖包 dependencies {// ...// Use this dependency to bundle the model with your appi…

CSS盒子的浮动与网页布局(重点,有电影页面案例)

浮动适用于那种盒子的并列布局 CSS 提供了三种传统布局方式(简单说,就是盒子如何进行排列顺序):  普通流(标准流)  浮动  定位 标准流(普通流/文档流) 所谓的标准流: 就是标签按照规定好默认方式排列. 1. 块级…

abap 如何debug 更新进程

今天在测试环境做一个外向交货单过账的时候,每次都会dump ST22中看到报错如下:DBSQL_DUPLICATE_KEY_ERROR 接着我就去SM13去看下在哪个跟新里面失败了 双击错误条目可以看到 那么我就想说去debug看看当时的变量到底是啥,为啥会主键重复&…

数据库的三大范式

第一范式: 属性不可分割:每个属性都是不可分割的原子项(实体的属性就是表中的列) 在上表中contact应该分为phone和adress两列 第二范式: 在满足第一范式的情况下,表中不存在部分依赖,非主键列…

压缩包文件暴力破解 -Server2005(解析)

任务五十一: 压缩包文件暴力破解 任务环境说明:Server2005 1. 通过本地PC中渗透测试平台Kali使用Nmap扫描目标靶机服务版本信息,将 Telnet 版本信息字符串 作为 Flag 提交; flag:Microsoft Windows XP telnetd 2. 通过本地PC中渗透测试平台Kali对服务器场景Windows进行渗透测…

云演CTF Blog

1、啥也搞不了,扫目录。出来个console 2、有显示锁掉了 3、抓包,改返回包 改成true,放包 不好意思,不会了,哈哈哈哈哈哈哈哈哈 你会的话,请告诉我,大佬