Pytorch从零开始实战13

Pytorch从零开始实战——ResNet与DenseNet探索

本系列来源于365天深度学习训练营

原作者K同学

文章目录

  • Pytorch从零开始实战——ResNet与DenseNet探索
    • 环境准备
    • 数据集
    • 模型选择
    • 开始训练
    • 可视化
    • 总结

环境准备

本文基于Jupyter notebook,使用Python3.8,Pytorch2.0.1+cu118,torchvision0.15.2,需读者自行配置好环境且有一些深度学习理论基础。本次实验的目的是探索ResNet和DenseNet结合。
第一步,导入常用包

import torch
import torch.nn as nn
import matplotlib.pyplot as plt
import torchvision
import torchvision.transforms as transforms
import torchvision.datasets as datasets
import torch.nn.functional as F
import random
from time import time
import numpy as np
import pandas as pd
import datetime
import gc
import os
import copy
import warnings
os.environ['KMP_DUPLICATE_LIB_OK']='True'  # 用于避免jupyter环境突然关闭
torch.backends.cudnn.benchmark=True  # 用于加速GPU运算的代码

设置随机数种子

torch.manual_seed(428)
torch.cuda.manual_seed(428)
torch.cuda.manual_seed_all(428)
random.seed(428)
np.random.seed(428)

检查设备对象

device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
device, torch.cuda.device_count() # # (device(type='cuda'), 2)

数据集

本次数据集是使用鸟的图片,分别有四种类别的鸟,根据鸟的类别名称存放在不同的文件夹中。
使用pathlib查看类别

import pathlib
data_dir = './data/bird_photos/'
data_dir = pathlib.Path(data_dir) # 转成pathlib.Path对象
data_paths = list(data_dir.glob('*')) 
classNames = [str(path).split("/")[2] for path in data_paths]
classNames # ['Black Throated Bushtiti', 'Cockatoo', 'Black Skimmer', 'Bananaquit']

使用transforms对数据集进行统一处理,并且根据文件夹名映射对应标签

all_transforms = transforms.Compose([transforms.Resize([224, 224]),transforms.ToTensor(),transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]) # 标准化
])total_data = datasets.ImageFolder("./data/bird_photos/", transform=all_transforms)
total_data.class_to_idx# {'Bananaquit': 0,# 'Black Skimmer': 1,# 'Black Throated Bushtiti': 2,# 'Cockatoo': 3}

随机查看5张图片

def plotsample(data):fig, axs = plt.subplots(1, 5, figsize=(10, 10)) #建立子图for i in range(5):num = random.randint(0, len(data) - 1) #首先选取随机数,随机选取五次#抽取数据中对应的图像对象,make_grid函数可将任意格式的图像的通道数升为3,而不改变图像原始的数据#而展示图像用的imshow函数最常见的输入格式也是3通道npimg = torchvision.utils.make_grid(data[num][0]).numpy()nplabel = data[num][1] #提取标签 #将图像由(3, weight, height)转化为(weight, height, 3),并放入imshow函数中读取axs[i].imshow(np.transpose(npimg, (1, 2, 0))) axs[i].set_title(nplabel) #给每个子图加上标签axs[i].axis("off") #消除每个子图的坐标轴plotsample(total_data)

在这里插入图片描述
根据8比2划分数据集和测试集,并且利用DataLoader划分批次和随机打乱

train_size = int(0.8 * len(total_data))
test_size  = len(total_data) - train_size
train_ds, test_ds = torch.utils.data.random_split(total_data, [train_size, test_size])batch_size = 32
train_dl = torch.utils.data.DataLoader(train_ds,batch_size=batch_size,shuffle=True,)
test_dl = torch.utils.data.DataLoader(test_ds,batch_size=batch_size,shuffle=True,)len(train_dl.dataset), len(test_dl.dataset) # (452, 113)

模型选择

本次模型采用模型集成,也就是说将一个输入特征分别送到两个不同的模型中去学习,到最后将输出特征融合后进行分类,每个模型可能对数据集的不同方面有更强的学习能力,因此通过集成,可以期望获得更全面、更强大的特征表示。
具体而言,本次实验使用了一个 DenseNet 和一个 ResNet,它们在网络结构和特征提取方面有所不同。DenseNet 使用密集连接的结构,充分利用了每一层的特征,而 ResNet 使用残差连接,有助于解决梯度消失问题,使得网络更易训练。

先建立ResNet模型,首先实现Block块,首先进行预激活层,包括标准化和ReLu激活函数,接着进行shortcut操作,如果conv_shortcut为True,会使用一个1x1卷积层进行变换,否则,如果stride为1,则进行恒等映射,否则使用1x1的最大池化。随后经过三个卷积层。在forward方法中,输入 x 经过预激活层,然后进行三个卷积操作,最后将shortcut和经过卷积的结果相加。这种结构使得梯度更容易反向传播,从而有助于训练深层网络。

class Block2(nn.Module):def __init__(self, in_channels, filters, kernel_size=3, stride=1, conv_shortcut=False):super(Block2, self).__init__()self.preact = nn.Sequential(nn.BatchNorm2d(in_channels),nn.ReLU())if conv_shortcut:self.shortcut = nn.Conv2d(in_channels, 4 * filters, kernel_size=1, stride=stride)else:if stride == 1:self.shortcut = nn.Identity()else: self.shortcut = nn.MaxPool2d(1, stride=stride)self.conv1 = nn.Sequential(nn.Conv2d(in_channels, filters, kernel_size=1, stride=1, bias=False),nn.BatchNorm2d(filters),nn.ReLU())self.conv2 = nn.Sequential(nn.ZeroPad2d(padding=(1, 1, 1, 1)),nn.Conv2d(filters, filters, kernel_size=kernel_size, stride=stride, bias=False),nn.BatchNorm2d(filters),nn.ReLU())self.conv3 = nn.Conv2d(filters, 4 * filters, kernel_size=1)def forward(self, x):preact = self.preact(x)shortcut = self.shortcut(preact)x = self.conv1(preact)x = self.conv2(x)x = self.conv3(x)out = shortcut + xreturn out

下面实现堆叠块,通过传入不同的参数去调用Block块,其中[Block2(4 * filters, filters) for i in range(0, blocks)],使用 Python 中的列表解析创建了 blocks 个残差块。这些残差块的输入通道数为 4 * filters,以匹配前一个残差块的输出通道数。

class Stack2(nn.Module):def __init__(self, in_channels, filters, blocks, stride1=2):super(Stack2, self).__init__()self.blocks = nn.Sequential(Block2(in_channels, filters, conv_shortcut=True),*[Block2(4 * filters, filters) for i in range(0, blocks)],Block2(4 * filters, filters, stride=stride1))def forward(self, x):return self.blocks(x)

下面实现ResNet网络主体,去掉全连接层。

class ResNetPart(nn.Module):def __init__(self, include_top=True, preact=True, num_classes=1000):super().__init__()self.conv1 = nn.Sequential(nn.Conv2d(3, 64, kernel_size=7, stride=2, padding=3, bias=False),nn.BatchNorm2d(64),nn.ReLU())self.pool1 = nn.MaxPool2d(kernel_size=3, stride=2, padding=1)self.conv2 = Stack2(64, 64, 3)self.conv3 = Stack2(256, 128, 4)self.conv4 = Stack2(512, 256, 6)self.conv5 = Stack2(1024, 512, 3, stride1=1)self.post = nn.Sequential(nn.BatchNorm2d(2048),nn.ReLU())self.include_top = include_topif include_top:self.avg_pool = nn.AdaptiveAvgPool2d(1)def forward(self, x):x = self.conv1(x)x = self.pool1(x)x = self.conv2(x)x = self.conv3(x)x = self.conv4(x)x = self.conv5(x)x = self.post(x)if self.include_top:x = self.avg_pool(x)x = torch.flatten(x, 1)return x

下面实现DenseNet部分。首先对DenseLayer类定义,本次实验使用add_module函数,默认是用于向类中添加一个子模块,第一个参数为模块名,第二个参数为模块实例,其实相当于加到父类的nn.Sequential里面,所以调用的时候使用super().forward(x),这段的核心是将输入 x 与新特征 t 进行通道维度上的连接,完成密集连接。

class DenseLayer(nn.Sequential):def __init__(self, num_input_features, growth_rate, bn_size, drop_rate):super().__init__()self.add_module("norm1", nn.BatchNorm2d(num_input_features))self.add_module("relu1", nn.ReLU(inplace=True))self.add_module("conv1", nn.Conv2d(num_input_features, bn_size * growth_rate, kernel_size=1, stride=1, bias=False))self.add_module("norm2", nn.BatchNorm2d(bn_size * growth_rate))self.add_module("relu2", nn.ReLU(inplace=True))self.add_module("conv2", nn.Conv2d(bn_size*growth_rate, growth_rate, kernel_size=3, stride=1, padding=1, bias=False))self.drop_rate = drop_ratedef forward(self, x):t = super().forward(x)if self.drop_rate > 0:t = F.dropout(t, p=self.drop_rate, training=self.training)return torch.cat([x, t], 1)

下面是DenseBlock的实现,通过循环创建了多个DenseLayer。其中的 num_input_features + i * growth_rate 用于指定输入通道的数量,确保每个DenseLayer的输入通道数逐渐增加。将新创建的DenseLayer添加为 DenseBlock 的子模块。循环结束后,DenseBlock 就包含了多个DenseLayer,每个DenseLayer都具有逐渐增加的输入通道数量。

class DenseBlock(nn.Sequential):def __init__(self, num_layers, num_input_features, bn_size, growth_rate, drop_rate):super().__init__()for i in range(num_layers):layer = DenseLayer(num_input_features + i * growth_rate, growth_rate, bn_size, drop_rate)self.add_module("denselayer%d" % (i + 1), layer)

下面是Transition,实现过渡的功能,是在块之间降低通道数量和空间维度。

class Transition(nn.Sequential):def __init__(self, num_input_feature, num_output_features):super().__init__()self.add_module("norm", nn.BatchNorm2d(num_input_feature))self.add_module("relu", nn.ReLU(inplace=True))self.add_module("conv", nn.Conv2d(num_input_feature, num_output_features, kernel_size=1, stride=1, bias=False))self.add_module("pool", nn.AvgPool2d(2, stride=2))

实现深度学习网络主体,将不同的输出特征进行融合,完成分类。

from collections import OrderedDict
class Model(nn.Module):def __init__(self, growth_rate=32, block_config=(6, 12, 24, 16), num_init_features=64,bn_size=4, compression_rate=0.5, drop_rate=0, num_classes=1000):super().__init__()self.features = nn.Sequential(OrderedDict([("conv0", nn.Conv2d(3, num_init_features, kernel_size=7, stride=2, padding=3, bias=False)),("norm0", nn.BatchNorm2d(num_init_features)),("relu0", nn.ReLU(inplace=True)),("pool0", nn.MaxPool2d(3, stride=2, padding=1))]))num_features = num_init_featuresfor i, num_layers in enumerate(block_config):block = DenseBlock(num_layers, num_features, bn_size, growth_rate, drop_rate)self.features.add_module("denseblock%d" % (i + 1), block)num_features += num_layers * growth_rateif i != len(block_config) - 1:transition = Transition(num_features, int(num_features * compression_rate))self.features.add_module("transition%d" % (i + 1), transition)num_features = int(num_features * compression_rate)self.features.add_module("norm5", nn.BatchNorm2d(num_features))self.features.add_module("relu5", nn.ReLU(inplace=True))self.classifier = nn.Linear(num_features + 2048, num_classes)for m in self.modules():if isinstance(m, nn.Conv2d):nn.init.kaiming_normal_(m.weight)elif isinstance(m, nn.BatchNorm2d):nn.init.constant_(m.bias, 0)nn.init.constant_(m.weight, 1)elif isinstance(m, nn.Linear):nn.init.constant_(m.bias, 0)self.part = ResNetPart()def forward(self, x):t = self.part(x)features = self.features(x)out = F.avg_pool2d(features, 7, stride=1).view(features.size(0), -1)out = torch.cat([out, t], dim=1) out = self.classifier(out)return out

使用summary查看网络
在这里插入图片描述

开始训练

定义训练函数

def train(dataloader, model, loss_fn, opt):size = len(dataloader.dataset)num_batches = len(dataloader)train_acc, train_loss = 0, 0for X, y in dataloader:X, y = X.to(device), y.to(device)pred = model(X)loss = loss_fn(pred, y)opt.zero_grad()loss.backward()opt.step()train_acc += (pred.argmax(1) == y).type(torch.float).sum().item()train_loss += loss.item()train_acc /= sizetrain_loss /= num_batchesreturn train_acc, train_loss

定义测试函数

def test(dataloader, model, loss_fn):size = len(dataloader.dataset)num_batches = len(dataloader)test_acc, test_loss = 0, 0with torch.no_grad():for X, y in dataloader:X, y = X.to(device), y.to(device)pred = model(X)loss = loss_fn(pred, y)test_acc += (pred.argmax(1) == y).type(torch.float).sum().item()test_loss += loss.item()test_acc /= sizetest_loss /= num_batchesreturn test_acc, test_loss

定义学习率、损失函数、优化算法

loss_fn = nn.CrossEntropyLoss()
learn_rate = 0.0002
opt = torch.optim.Adam(model.parameters(), lr=learn_rate)

开始训练,epoch设置为30

import time
epochs = 20
train_loss = []
train_acc = []
test_loss = []
test_acc = []T1 = time.time()best_acc = 0
best_model = 0for epoch in range(epochs):model.train()epoch_train_acc, epoch_train_loss = train(train_dl, model, loss_fn, opt)model.eval() # 确保模型不会进行训练操作epoch_test_acc, epoch_test_loss = test(test_dl, model, loss_fn)if epoch_test_acc > best_acc:best_acc = epoch_test_accbest_model = copy.deepcopy(model)train_acc.append(epoch_train_acc)train_loss.append(epoch_train_loss)test_acc.append(epoch_test_acc)test_loss.append(epoch_test_loss)print("epoch:%d, train_acc:%.1f%%, train_loss:%.3f, test_acc:%.1f%%, test_loss:%.3f"% (epoch + 1, epoch_train_acc * 100, epoch_train_loss, epoch_test_acc * 100, epoch_test_loss))T2 = time.time()
print('程序运行时间:%s秒' % (T2 - T1))PATH = './best_model.pth'  # 保存的参数文件名
if best_model is not None:torch.save(best_model.state_dict(), PATH)print('保存最佳模型')
print("Done")

由于数据量小,所以略微有些过拟合。
在这里插入图片描述

可视化

可视化训练过程和测试过程

import warnings
warnings.filterwarnings("ignore")               #忽略警告信息
plt.rcParams['font.sans-serif']    = ['SimHei'] # 用来正常显示中文标签
plt.rcParams['axes.unicode_minus'] = False      # 用来正常显示负号
plt.rcParams['figure.dpi']         = 100        #分辨率epochs_range = range(epochs)plt.figure(figsize=(12, 3))
plt.subplot(1, 2, 1)plt.plot(epochs_range, train_acc, label='Training Accuracy')
plt.plot(epochs_range, test_acc, label='Test Accuracy')
plt.legend(loc='lower right')
plt.title('Training and Validation Accuracy')plt.subplot(1, 2, 2)
plt.plot(epochs_range, train_loss, label='Training Loss')
plt.plot(epochs_range, test_loss, label='Test Loss')
plt.legend(loc='upper right')
plt.title('Training and Validation Loss')
plt.show()

在这里插入图片描述

总结

由于作者水平有限,所以本次模型之间的结合探索采用模型集成,这其中的优势有:1.每个模型通过不同的方式学习数据的表示,将它们集成可以得到更全面、更丰富的特征表示。2.不同的模型可能对数据集中的不同样本和模式有更好的泛化能力,集成可以减少过拟合的风险。这样的模型可以提供更强的鲁棒性,但一定有很多更好的结合方式。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/224138.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

Java连接数据库实现用户登录和注册功能

目录 需求内容如下 示例代码 数据库studb Java代码 效果图 需求内容如下 1,创建数据库studb 2,库中添加用户表userinfo,包含如下字段 用户id ,用户名,用户密码,用户权限 (数据类型和约束自己定义&#xff09…

web微服务规划

一、背景 通过微服务来搭建web系统,就要对微服务进行规划,包括服务的划分,每个服务和数据库的命名规则,服务用到的端口等。 二、微服务划分 1、根据业务进行拆分 如: 一个购物系统可以将微服务拆分为基础中心、会员…

SpringMVC异常处理机制

2.1 异常描述 在J2EE项目的开发中,不管是对底层的数据库操作过程,还是业务层的处理过程,还是控制层的处理过程,都不可避免会遇到各种可预知的、不可预知的异常需要处理。每个过程都单独处理异常,系统的代码耦合度高&a…

【C++入门到精通】 线程库 | thread类 C++11 [ C++入门 ]

阅读导航 引言一、thread类的简单介绍二、线程函数详细介绍1. start() 函数(1)头文件(2)函数原型 2. join() 函数(1)头文件(2)函数原型 3. detach() 函数(1)头…

LeetCode Hot100 25.K个一组翻转链表

题目: 给你链表的头节点 head ,每 k 个节点一组进行翻转,请你返回修改后的链表。 k 是一个正整数,它的值小于或等于链表的长度。如果节点总数不是 k 的整数倍,那么请将最后剩余的节点保持原有顺序。 你不能只是单纯…

7+m6A+分型+实验,甲基化方向的生信思路,没有思路的同学可参考

今天给同学们分享一篇生信文章“Landscape analysis of m6A modification regulators related biological functions and immune characteristics in myasthenia gravis”,这篇文章发表在J Transl Med期刊上,影响因子为7.4。 结果解读: MG相…

快速文件搜索软件 Everything-voidtools

Everything 文件搜索软件 "Everything"是一款快速、轻巧且高效的桌面搜索引擎软件,专门用于在 Windows 操作系统上搜索文件和文件夹。它的主要特点是超快的搜索速度和精准的搜索结果,能够让用户快速找到他们需要的文件或文件夹。 1. 快速搜…

IDEA小技巧

目录 1. IDEA自动添加注释 创建类的时候自动添加注释 创建函数、方法的注释 1. IDEA自动添加注释 参考文档:idea java 自动添加文件注释 idea新建类自动注释_mob6454cc73c728的技术博客_51CTO博客 【操作工具】IDEA创建类及已有类添加注释-详细操作_idea设置创建…

搭建个人智能家居 开篇(搭建Home Assistant)

搭建个人智能家居 开篇(搭建Home Assistant) 前言Home Assistant搭建Home AssistantUbuntu系统搭建Windows系统搭建VM安装方法VirtualBox安装方法: 配置Home Assistant控制页面 前言 随着科技的进步、发展,物联网给我们的生活带来…

JdbcTemplate query系列方法指定jdbcType类型

使用SqlParameterValue类包装一下就行了,只要创建一个SqlParameterValue对象,通过构造函数把jdbcType类型(用的是Types中的常量)和值传入 例如: // 这两个包下面的 import org.springframework.jdbc.core.SqlParamete…

c YUV 转 JPEG(准备霍夫曼编码)

先取yuv 文件中一个168的块,跑通全流程 理解与思路: 1.块分割 YUV 文件分为:YUV444 YUV 422 YUV420。444:就是:12个char 有4个Y,4个U,4个 U,422:8个char 中有4个Y &#x…

Redis——01,服务器购买、安装Redis

服务器购买、安装Redis 一、随便去一个主流的国内主流的云服务提供商,购买一个服务器。二、Redis安装:————————创作不易,如觉不错,随手点赞,关注,收藏(* ̄︶ ̄),谢…

[论文阅读]Multimodal Virtual Point 3D Detection

Multimodal Virtual Point 3D Detection 多模态虚拟点3D检测 论文网址:MVP 论文代码:MVP 论文简读 方法MVP方法的核心思想是将RGB图像中的2D检测结果转换为虚拟的3D点,并将这些虚拟点与原始的Lidar点云合并。具体步骤如下: (1)…

VINS-MONO代码解读6----pose_graph

开始pose_graph部分,本部分记住一句话无论是快速重定位还是正常重定位,求出 T w 1 w 2 T_{w_1w_2} Tw1​w2​​就是终极目标。 还剩一个整体Pipeline~~ 1. pose_graph_node.cpp 注意,定义全局变量时即实例化了一个对象 PoseGraph posegra…

C++之模板

目录 泛型编程 模板 函数模板 函数模板的实例化 隐式实例化 显示实例化 类模板 我们知道STL(标准模板库)是C学习的精华所在,在学习STL之前我们得先学习一个新的知识点-------模板。那么模板究竟是什么呢?围绕着这个问题&a…

绘图示例---QT手动调用绘图事件,按钮控制图片

效果: 点击 “移动” 图片向右移动20,点击 “西理win嘛” 图片每秒向右移动20 QQ录屏20231212164128 下面时代码详解: 注意使用UI和代码实现按钮的不同 UI: ui->pushButton->setGeometry(windowWidth-105, windowHeight-25, 100, 20);…

【思考】只有实对称矩阵才能正交对角化吗?【矩阵的合同】

1:命题改写(A可以正交对角化) 2:左乘Q右乘Q逆(Q转置) 3:取转置 4:得证 总结 可以看到,矩阵如果可以正交对角化,那么一定是实对称矩阵。 另外,这…

【期末复习向】长江后浪推前浪之ChatGPT概述

参考文章:GPT系列模型技术路径演进-CSDN博客 这篇文章讲了之前称霸NLP领域的预训练模型bert,它是基于预训练理念,采用完形填空和下一句预测任务2个预训练任务完成特征的提取。当时很多的特定领域的NLP任务(如情感分类&#xff0c…

LLM之Agent(六)| 使用AutoGen、LangChian、RAG以及函数调用构建超级对话系统

本文我们将尝试AutoGen集成函数调用功能。函数调用最早出现在Open AI API中,它允许用户调用外部API来增强系统的整体功能和效率。例如,在对话过程中根据需要调用天气API。 函数调用和Agent有各种组合,在这里我们将通过函数调用调用RAG检索增强…

【SpringBoot】配置文件

配置文件官网 1. 配置方式 application.propertiesapplication.yml / application.yaml 2. 自定义配置信息 将实体类中的本应该写死的信息写在属性配置文件中。 可以使用 Value("${键名}") 获取,也可以使用 ConfigurationProperties(prefix"前…