智能优化算法应用:基于黄金正弦算法3D无线传感器网络(WSN)覆盖优化 - 附代码

智能优化算法应用:基于黄金正弦算法3D无线传感器网络(WSN)覆盖优化 - 附代码

文章目录

  • 智能优化算法应用:基于黄金正弦算法3D无线传感器网络(WSN)覆盖优化 - 附代码
    • 1.无线传感网络节点模型
    • 2.覆盖数学模型及分析
    • 3.黄金正弦算法
    • 4.实验参数设定
    • 5.算法结果
    • 6.参考文献
    • 7.MATLAB代码

摘要:本文主要介绍如何用黄金正弦算法进行3D无线传感器网(WSN)覆盖优化。

1.无线传感网络节点模型

本文主要基于0/1模型,进行寻优。在二维平面上传感器节点的感知范围是一个以节点为圆心,半径为 R n R_n Rn的圆形区域,该圆形区域通常被称为该节点的“感知圆盘”, R n R_n Rn称为传感器节点的感知半径,感知半径与节点内置传感器件的物理特性有关,假设节点 n n n的位置坐标为 ( x n , y n , z n ) (x_n,y_n,z_n) (xn,yn,zn)在0-1感知模型中,对于平面上任意一点 p ( x p , y p , z p ) p(x_p,y_p,z_p) p(xp,yp,zp),则节点 n n n监测到区域内点 p p p的事件发生概率为:
P r ( n , p ) = { 1 , d ( n , p ) ≤ R n 0 , e s l e (1) P_r(n,p)=\begin{cases}1, \,d(n,p)\leq R_n\\ 0,\, esle \end{cases}\tag{1} Pr(n,p)={1,d(n,p)Rn0,esle(1)
其中 d ( n , p ) = ( x n − x p ) 2 + ( y n − y p ) 2 + ( z n − z p ) 2 d(n,p)=\sqrt{(x_n-x_p)^2+(y_n-y_p)^2 + (z_n-z_p)^2} d(n,p)=(xnxp)2+(ynyp)2+(znzp)2 为点和之间的欧式距离。

2.覆盖数学模型及分析

现假定目标监测区域为二维平面,在区域 A r e a Area Area上投放同型结构传感器节点的数目为N,每个节点的位置坐标值假设已被初始化赋值,且节点的感知半径r。传感器节点集则表示为:
N o d e { x 1 , . . . , x N } (2) Node\{x_1,...,x_N\} \tag{2} Node{x1,...,xN}(2)
其中 n o d e i = { x i , y i , z i , r } node_i=\{x_i,y_i,z_i,r\} nodei={xi,yi,zi,r},表示以节点 ( x i , y i , z i ) (x_i,y_i,z_i) (xi,yi,zi)为圆心,r为监测半径的球,假定监测区域 A r e a Area Area被数字化离散为 m ∗ n ∗ l m*n*l mnl个空间点,空间点的坐标为 ( x , y , z ) (x,y,z) (x,y,z),目标点与传感器节点间的距离为:
d ( n o d e i , p ) = ( x i − x ) 2 + ( y i − y ) 2 + ( z i − z ) 2 (3) d(node_i,p)=\sqrt{(x_i-x)^2+(y_i-y)^2 + (z_i-z)^2}\tag{3} d(nodei,p)=(xix)2+(yiy)2+(ziz)2 (3)
目标区域内点被传感器节点所覆盖的事件定义为 c i c_i ci。则该事件发生的概率 P c i P{c_i} Pci即为点 ( x , y , z ) (x,y,z) (x,y,z)被传感器节点 n o d e i node_i nodei所覆盖的概率:
P c o v ( x , y , z , n o d e i ) = { 1 , i f d ( n o d e i , p ) ≤ r 0 , e s l e (4) P_{cov}(x,y,z,node_i)=\begin{cases}1, if\,d(node_i,p)\leq r\\ 0,\, esle \end{cases}\tag{4} Pcov(x,y,z,nodei)={1,ifd(nodei,p)r0,esle(4)
我们将所有的传感器节点在目标监测环境中的区域覆盖率 C o v e r R a t i o CoverRatio CoverRatio定义为传感器节点集的覆盖面积与监测区域的面积之比,如公式所示:
C o v e r R a t i o = ∑ P c o v m ∗ n ∗ l (5) CoverRatio = \frac{\sum P_{cov}}{m*n*l}\tag{5} CoverRatio=mnlPcov(5)
那我们的最终目标就是找到一组节点使得覆盖率最大。

3.黄金正弦算法

黄金正弦算法原理请参考:https://blog.csdn.net/u011835903/article/details/111699194
黄金正弦算法是寻找最小值。于是适应度函数定义为未覆盖率最小,即覆盖率最大。如下:
f u n = a r g m i n ( 1 − C o v e r R a t i o ) = a r g m i n ( 1 − ∑ P c o v m ∗ n ∗ l ) (6) fun = argmin(1 - CoverRatio) = argmin(1-\frac{\sum P_{cov}}{m*n*l}) \tag{6} fun=argmin(1CoverRatio)=argmin(1mnlPcov)(6)

4.实验参数设定

无线传感器覆盖参数设定如下:

%% 设定WNS覆盖参数,
%% 默认输入参数都是整数,如果想定义小数,请自行乘以系数变为整数再做转换。
%% 比如范围1*1,R=0.03可以转换为100*100,R=3;
%区域范围为AreaX*AreaY*AreaZ
AreaX = 100;
AreaY = 100;
AreaZ = 100;
N = 20 ;%覆盖节点数
R = 15;%通信半径

黄金正弦算法参数如下:

%% 设定黄金正弦优化参数
pop=30; % 种群数量
Max_iteration=30; %设定最大迭代次数
lb = ones(1,3*N);
ub = [AreaX.*ones(1,N),AreaY.*ones(1,N),AreaZ.*ones(1,N)];
dim = 3*N;%维度为3N,N个坐标点

5.算法结果

在这里插入图片描述
在这里插入图片描述

从结果来看,覆盖率在优化过程中不断上升。表明黄金正弦算法对覆盖优化起到了优化的作用。

6.参考文献

[1] 史朝亚. 基于PSO算法无线传感器网络覆盖优化的研究[D]. 南京理工大学.

7.MATLAB代码

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/222000.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

GeoTrust OV证书

当谈到网站安全性和可信度时,GeoTrust OV证书是一个备受推崇的选择。作为一家备受尊敬的数字证书颁发机构,GeoTrust以其卓越的品牌声誉和高质量的产品而闻名于世。GeoTrust OV证书提供了一系列的安全功能,同时还具有出色的性价比,…

系统级基础信号知识【Linux】

目录 一,什么是信号 进程面对信号常见的三种反应概述 二,产生信号 1.终端按键产生信号 signal 2. 进程异常产生信号 核心转储 3. 系统调用函数发送信号 kill raise abort 小结: 4. 由软件条件产生 alarm 5. 硬件异常产生信号…

WEB服务器介绍

Web服务器是指驻留于因特网上某种类型计算机的程序。当Web浏览器连到服务器上并请求文件时,服务器将处理该请求并将文件发送到该浏览器上,附带的信息会告诉浏览器如何查看该文件,即文WEB服务器件类型。服务器使用HTTP进行信息交流&#xff0c…

Java之异常

一、异常是什么 程序在执行过程中,出现的非正常的情况,最终会导致JVM的非正常停止。 注意:异常指的并不是语法错误,语法错了,编译不通过,不会产生字节码文件,根本不能运行. 二、异常体系 三、异常的分类 (一)、编译时…

明懿金汇应对气候变化:投资于绿色未来

2023年,面对全球范围内的气候变化和环境保护挑战,明懿金汇积极响应,展现出其在可持续金融领域的领导力。作为一家前沿的金融科技公司,明懿金汇不仅将环保理念融入到其金融产品和服务中,更通过直接的行动和投资&#xf…

【Python】conda镜像配置,.condarc文件详解,channel镜像

1. conda 环境 安装miniconda即可,Miniconda 安装包可以到 http://mirrors.aliyun.com/anaconda/miniconda/ 下载。 .condarc是conda 应用程序的配置文件,在用户家目录(windows:C:\users\username\),用于…

用提问的方式来学习:冯·诺伊曼体系结构与操作系统OS

学习冯诺伊曼体系结构之前,我们要本着两个问题来学习: 什么是冯诺伊曼体系结构?为什么要有冯诺伊曼体系结构? 一、冯诺伊曼体系结构 1. 什么是冯诺伊曼体系结构? 那我们就先来回答一下什么是冯诺伊曼体系结构&#x…

Python中的TesserOCR:文字识别的全方位指南

更多资料获取 📚 个人网站:ipengtao.com 文字识别在图像处理领域中起到了至关重要的作用,而TesserOCR(Tesseract OCR的Python封装)为开发者提供了一个强大的工具,使得文字识别变得更加便捷。本文将通过详细…

Matlab示例-Examine 16-QAM Using MATLAB学习笔记

​工作之余学习16-QAM 写在前面 网上看到许多示例,但一般都比较难以跑通。所以,还是老方法,先将matlab自带的例子研究下。 Examine 16-QAM Using MATLAB Examine 16-QAM Using MATLAB 或者,在matlab中,键入&#x…

C语言数据结构-二叉树的入门

文章目录 0 碎碎念1 二叉树的概念和结构1.1 概念和特点1.2 结构1.3 特殊的二叉树1.4 二叉树的存储与性质1.5 前序、中序和后序 2 简单二叉树的实现2.1 定义数据结构类型2.2 前序、中序和后序接口的实现2.3 二叉树中节点的个数2.4 叶子节点的个数 3 完整代码块3.1 BinaryTree.h3…

「神印王座」皓晨带伙伴参与伊老试炼,12魔神攻打震南关,高能

Hello,小伙伴们,我是拾荒君。 时光匆匆,国漫《神印王座》的第85集已经与大家如约而至。想必各位观众都已经迫不及待地观看了这一集,其中,龙皓晨向光之晨曦团的成员们揭示了永恒之塔的秘密,并带领他们深入其中。 永恒之…

nginx服务前端访问查看无响应的问题

问题 nginx 启动之后,前端访问无数据,F12 查看,提示挂起。 以为是配置问题,查看配置文件,未发现配置的有问题。 原因 通过查看配置文件,发现转发的服务地址为127.0.0.1,手动ping 127.0.0.1&a…

如何部署Portainer容器管理工具+cpolar内网穿透实现公网访问管理界面

文章目录 前言1. 部署Portainer2. 本地访问Portainer3. Linux 安装cpolar4. 配置Portainer 公网访问地址5. 公网远程访问Portainer6. 固定Portainer公网地址 前言 本文主要介绍如何本地安装Portainer并结合内网穿透工具实现任意浏览器远程访问管理界面。Portainer 是一个轻量级…

Unity 关于Rigidbody刚体组件的理解

一、基本了解 刚体Rigidbody因具体物理相关的属性,使得实际应用中更有真实感。应用也多: Rigidbody它可以受到重力、碰撞或者力的作用,所以我们可以用它模拟物体的真实物理行为,如受到重力的作用、与其他刚体对象进行碰撞&#…

ChatGPT Plus重新开启订阅

12月14日凌晨,OpenAI首席执行官Sam Altman在社交平台宣布,终于找到了更多的GPU算力,重新开启订阅ChatGPT Plus。 上个月15日,OpenAI就因为算力不足,以及用户激增等原因暂停了ChatGPT Plus订阅。 Sam表示,在…

【九】python模板方法模式

9.1 模板方法模式概述 模板方法模式是一种行为设计模式,它使用一个抽象的基类定义了一个操作中的算法的骨架,而将一些步骤的实现延迟到子类中。模板方法模式允许子类在不改变算法结构的情况下重新定义算法中的某些步骤。 9.2 代码示例 在Python中使用…

【亚马逊云科技】通过高性能低延迟对象存储 S3实现网站资源托管

本篇文章授权活动官方亚马逊云科技文章转发、改写权,包括不限于在 亚马逊云科技开发者社区, 知乎,自媒体平台,第三方开发者媒体等亚马逊云科技官方渠道 文章目录 前言1 S3 介绍1.1 优点 2 使用步骤2.1 注册账户2.2 创建存储桶2.2.1 打开控制…

智能指针管理“newed对象”

为什么要有智能指针? 指针智能是管理管理动态内存分配对象的一种机制。它提供了自动管理内存,避免常见内存泄漏和悬空指针。 对于上述Func函数的操作,一不小心就会产生很多问题。 p1 new时候抛异常 什么都不做p2 new时候抛异常 p1需要被清理…

深入理解JVM虚拟机第三十篇:详解JVM当中栈帧的一些附加信息以及虚拟机栈的5个面试题

😉😉 欢迎加入我们的学习交流群呀: ✅✅1:这是孙哥suns给大家的福利! ✨✨2:我们免费分享Netty、Dubbo、k8s、Mybatis、Spring...应用和源码级别的视频资料 🥭🥭3:QQ群:583783824 📚📚 工作微信:BigTreeJava 拉你进微信群,免费领取! 🍎🍎4:本文章…

如何在Ubuntu的Linux系统上搭建nacos集群

官方给出的集群部署架构图 集群部署说明 (nacos.io)3个或3个以上nacos节点才能构成集群当前示例中包含3个nacos节点,同时一个负载均衡器代理3个nacos,本示例中负载均衡器可使用的是nginx 准备并安装好正常运行的nginx,本示例略准备并安装好正…