MySQL系列(十):主从架构

在这里插入图片描述

一:主从架构

常见的主从架构模式有四种:

  • 一主多从架构:适用于读大于写的场景,采用多个从库来分担数据库系统的读压力。
  • 多主架构:适用于读写参半的场景,采用多个主库来承载数据库系统整体的读写压力。
  • 多主一从架构:适用于写大于读的场景,采用多个主库分担写压力,单个从库承载读压力。
  • 级联复制架构:适用于读大于写的场景,采用单个从节点来分担从库对主库造成的 I/O 压力。
    接下来的讨论都是针对最常见的一主多从架构。

主从架构中必须有一个主节点,以及一个或多个从节点,所有的数据都会先写入到主,接着其他从节点会复制主节点上的增量数据,从而保证数据的最终一致性,使用主从复制方案,可以进一步提升数据库的可用性和性能:

  • 在主节点宕机或故障的情况下,从节点能自动切换成主节点的身份,从而继续对外提供服务。

  • 提供数据备份的功能,当主节点的数据发生损坏时,从节点中依旧保存着完整数据。

  • 可以基于主从实现读写分离,主节点负责处理写请求,从节点处理读请求,进一步提升性能。
    但无论任何技术栈的主从架构,都会存在致命硬伤,同时也会存在些许问题需要解决:

  • 硬伤:木桶效应,一个主从集群中所有节点的容量,受限于存储容量最低的哪台服务器。

  • 数据一致性问题:由于同步复制数据的过程是基于网络传输完成的,所以存储延迟性。

  • 脑裂问题:从节点会通过心跳机制,发送网络包来判断主机是否存活,网络故障情况下会产生多主。

二:主从复制

MySQL 集群的主从复制过程梳理成 3 个阶段:

  • 写入 Binlog:主库更新本地存储数据,并写 binlog 日志,然后提交事务。
  • 同步 Binlog:把 binlog 复制到所有从库上,每个从库把 binlog 写到暂存日志中。
  • 回放 Binlog:回放 binlog,并更新存储引擎中的数据。
    在这里插入图片描述

具体详细过程如下:

1.MySQL 主库在收到客户端提交事务的请求之后,会先更新数据;
2.数据写入完成后,再去写入 binlog,然后提交事务,返回客户端“操作成功”的响应;
3.主节点上有一条专门监听 binlog 的 log dump 线程;
4.当 log dump 线程监听到日志发生变更时,会通知从节点来拉取数据;
5.从节点有专门的 I/O 线程(io_thread)用于等待主节点的通知,当收到通知时会去请求一定范围的数据;
6.当从节点在主节点上请求到数据后,会将得到的数据写入到 relay-log 中继日志,然后返回给主库“复制成功”的响应;
7.从节点上有专门负责监听 relay-log 变更的线程(sql_thread),当日志出现变更时会开始工作;
8.中继日志出现变更后,会从中读取日志记录,然后回放 binlog 更新数据,实现主从数据一致性。

复制模式
同步复制
MySQL 主库提交事务的线程要等待所有从库的复制成功响应,才返回客户端结果。这种方式在实际项目中,基本上没法用,原因有两个:一是性能很差,因为要复制到所有节点才返回响应;二是可用性也很差,主库和所有从库任何一个数据库出问题,都会影响业务。

异步复制
是 MySQL 默认使用的复制模式,MySQL 主库提交事务的线程并不会等待 binlog 同步到各从库,就返回客户端结果。这种模式一旦主库宕机,数据就会发生丢失。

半同步复制
MySQL 5.7 版本之后增加的一种复制方式,介于两者之间,事务线程不用等待所有的从库复制成功响应,只要一部分复制成功响应回来就行,比如一主二从的集群,只要数据成功复制到任意一个从库上,主库的事务线程就可以返回给客户端。这种半同步复制的方式,兼顾了异步复制和同步复制的优点,即使出现主库宕机,至少还有一个从库有最新的数据,不存在数据丢失的风险。

增强式半同步复制
也被称为无损复制,也是 MySQL5.7 引入的。和之前传统的半同步复制区别在于:从 after-commit 变成了 after-sync ,如果将复制模式配置成半同步时,默认就会选用无损复制模式。

after-commit:主库在未收到从库的 ACK 之前,虽然不会给客户端返回写入成功,但本质上会提交事务,也就是主库中的其他事务是可以看见对应数据的,当此时出现宕机时,就会导致旧主上能查询出的数据,在新主上无法查询出来了。
after-sync:当主库未收到从库的 ACK 之前,也不会在主库上提交事务,也就是保证了主从节点的数据强一致性,解决了 after-commit 中存在的问题。但是相较于 after-commit,可能导致事务迟迟不提交,从而导致锁资源不释放和阻塞等待等性能问题。

延迟复制
当从库上的 I/O 线程,将主库的 binlog 请求回来后,从节点的 SQL 线程并不会立刻解析日志执行,而是等待一段时间后再解析日志执行,这个等待的时间可以配置。

延迟复制的好处是可以防止误删操作。缺点是会有很长一段时间的数据不一致,可能导致数据的丢失。一般用于仅作为备库的节点使用,不能进行读写分离。

并行复制
GTID复制
GTID,Global Transaction Identifier,用于唯一地标识一个事务。

GTID 由节点 UUID + 事务 ID 两部分组成,MySQL 在第一次启动时都会利用 UUID 随机生成一个 server_id,还会对每一个写事务都分配一个顺序递增的值作为事务 ID,GTID 的格式为 server_uuid:trx_id。

基于 GTID 的复制过程:

master 在更新数据时,会为每一个写事务分配一个全局的 GTID,并记录到 binlog 中。
slave 节点的 I/O 线程拉取数据时,会将读到的记录写到 relay-log 中,并设置 gtid_next 值。
slave 节点的 SQL 线程执行前,会读取 gtid_next 值得知接下来该解析哪条日志并执行。
slave 节点的 SQL 线程在执行时,会先比对自身的 binlog 日志中是否有对应的 GTID:
有:意味着该 GTID 对应的事务已经执行过了,slave 会自动忽略掉这条记录。
没有:SQL 解析该 GTID 对应的 relay-log 记录并执行,再将 GTID 记录到 binlog。

基于 GTID 的自动同步:发生主从切换时可以执行 change master to master_auto_position=1,会自动去新主库上寻找数据的同步点。

GTID 是基于事务来实现的,也就代表不支持事务的存储引擎无法使用这种机制。

组复制
GTID 复制是组复制得基础。组复制是指将一组并行执行的事务,全部放入到一个 GTID 中记录,后续从节点同步数据时,会一次性读取这一组事务解析并执行,即组提交。

组复制的 GTID 通过逗号分隔。

并行复制
并行复制是在组复制的基础上实现的。因为能够在同一时间内提交的事务,绝对是不存在锁冲突的,所以可以开启多条线程同时执行一个组中不同的事务。

并行复制能够在很大程度上提升从库复制数据的速度,也就是能够让从库的数据实时性提升。

在 MySQL5.7 中官方为这种机制命名为 enhanced multi-threaded slave,简称 MTS 机制,同时为了兼容 5.6 版本中的并行复制,又多加入了一个 slave-parallel-type 参数:

DATABASE:默认的并行复制模式,表示基于库级别来完成并行复制。
LOGICAL_CLOCK:表示基于组提交的方式来完成并行复制。
虽然 5.7 中的并行复制,在一定程度上解决了原有的从库延迟问题,但如果一个新的从节点加入集群时,因为要从头开始同步数据,这种并行复制的模式依旧存在效率问题,而到了 MySQL8.0 对于并行复制技术提出了真正的解决之道,也就是基于 writeset 的 MTS 技术。即多个事务之间,只要变更的数据记录没有重叠,也就是操作的数据没有冲突,无需在一个事务组内,也可以支持并发执行。

两阶段提交
2PC,two-phase commit protocol。

事务提交后,redo log 和 binlog 都要持久化到磁盘,但是这两个是独立的逻辑,可能出现半成功的状态,这样就造成两份日志之间的逻辑不一致。

如果在将 redo log 刷入到磁盘之后, MySQL 突然宕机了,而 binlog 还没有来得及写入。MySQL 重启后,通过 redo log 能将 Buffer Pool 中的相应数据恢复到新值,但是 binlog 里面没有记录这条更新语句,在主从架构中,binlog 会被复制到从库,由于 binlog 丢失了这条更新语句,从库的数据是旧值;
如果在将 binlog 刷入到磁盘之后, MySQL 突然宕机了,而 redo log 还没有来得及写入。由于 redo log 还没写,崩溃恢复以后这个事务无效,所以数据还是旧值;而 binlog 里面记录了这条更新语句,数据是新值;
在持久化 redo log 和 binlog 这两份日志的时候,如果出现半成功的状态,就会造成主从环境的数据不一致性。因为 redo log 影响主库的数据,binlog 影响从库的数据,所以 redo log 和 binlog 必须保持一致才能保证主从数据一致。

MySQL 为了避免出现两份日志之间的逻辑不一致的问题,使用了「两阶段提交」来解决,两阶段提交其实是分布式事务一致性协议,它可以保证多个逻辑操作要不全部成功,要不全部失败,不会出现半成功的状态。

当客户端执行 commit 语句或者在自动提交的情况下,MySQL 内部开启一个 XA 事务,分两阶段来完成 XA 事务的提交,分别是准备阶段和提交阶段。

prepare 阶段:将 XID(内部 XA 事务的 ID) 写入到 redo log,同时将 redo log 对应的事务状态设置为 prepare,然后将 redo log 持久化到磁盘(innodb_flush_log_at_trx_commit = 1 的作用);
commit 阶段:把 XID 写入到 binlog,然后将 binlog 持久化到磁盘(sync_binlog = 1 的作用),接着调用引擎的提交事务接口,将 redo log 状态设置为 commit,此时该状态并不需要持久化到磁盘,只需要 write 到文件系统的 page cache 中就够了,因为只要 binlog 写磁盘成功,就算 redo log 的状态还是 prepare 也没有关系,一样会被认为事务已经执行成功;
在这里插入图片描述

不管是时刻 A(redo log 已经写入磁盘, binlog 还没写入磁盘),还是时刻 B (redo log 和 binlog 都已经写入磁盘,还没写入 commit 标识)崩溃,此时的 redo log 都处于 prepare 状态。

在 MySQL 重启后会按顺序扫描 redo log 文件,碰到处于 prepare 状态的 redo log,就拿着 redo log 中的 XID 去 binlog 查看是否存在此 XID:

如果 binlog 中没有当前内部 XA 事务的 XID,说明 redolog 完成刷盘,但是 binlog 还没有刷盘,则回滚事务。对应时刻 A 崩溃恢复的情况。
如果 binlog 中有当前内部 XA 事务的 XID,说明 redolog 和 binlog 都已经完成了刷盘,则提交事务。对应时刻 B 崩溃恢复的情况。
可以看到,对于处于 prepare 阶段的 redo log,即可以提交事务,也可以回滚事务,这取决于是否能在 binlog 中查找到与 redo log 相同的 XID,如果有就提交事务,如果没有就回滚事务。这样就可以保证 redo log 和 binlog 这两份日志的一致性了。

两阶段提交是以 binlog 写成功为事务提交成功的标识。

事务没提交的时候,redo log 也是可能被持久化到磁盘。但是 binlog 必须在事务提交之后,才可以持久化到磁盘。

组提交
两阶段提交虽然保证了两个日志文件的数据一致性,但是性能很差,主要有两个方面的影响:

磁盘 I/O 次数高:对于“双1”配置,每个事务提交都会进行两次 fsync(刷盘),一次是 redo log 刷盘,另一次是 binlog 刷盘。
锁竞争激烈:两阶段提交虽然能够保证「单事务」两个日志的内容一致,但在「多事务」的情况下,却不能保证两者的提交顺序一致,因此,在两阶段提交的流程基础上,还需要加一个锁来保证提交的原子性,从而保证多事务的情况下,两个日志的提交顺序一致。
MySQL 引入了 binlog 组提交(group commit)机制,当有多个事务提交的时候,会将多个 binlog 刷盘操作合并成一个,从而减少磁盘 I/O 的次数。

MySQL 5.7 开始有 redo log 组提交。
引入了组提交机制后,prepare 阶段不变,只针对 commit 阶段,将 commit 阶段拆分为三个过程:

flush 阶段:多个事务按进入的顺序将 binlog 从 cache 写入文件(不刷盘);
sync 阶段:对 binlog 文件做 fsync 操作(多个事务的 binlog 合并一次刷盘);
commit 阶段:各个事务按顺序做 InnoDB commit 操作;
上面的每个阶段都有一个队列,每个阶段有锁进行保护,因此保证了事务写入的顺序,第一个进入队列的事务会成为 leader,领导所在队列的所有事务,全权负责整队的操作,完成后通知队内其他事务操作结束。

同一时刻只允许一组事务提交。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/220601.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

可视化 Java 项目

有一定规模的 IT 公司,只要几年,必然存在大量的代码,比如腾讯,2019 年一年增加 12.9 亿行代码,现在只会更多。不管是对于公司,还是对于个人,怎么低成本的了解这些代码的对应业务,所提…

Spring Boot统一功能处理(Spring拦截器)

为什么需要Spring拦截器 原生的Spring AOP实现统一拦截有两大难点,1.定义拦截的规则难写;2.在切面类中拿到HttpSession比较难。为此Spring官方提供了拦截器帮我们解决了上面痛点。 实现登入信息验证拦截器 实现HanderInterceptor接口重写preHeadler方…

【LeetCode刷题】--172.阶乘后的零

172.阶乘后的零 方法&#xff1a; class Solution {public int trailingZeroes(int n) {int ans 0;for(int i 5;i<n;i5){for(int x i; x % 50; x/5){ans;}}return ans;} }进一步优化&#xff1a; class Solution {public int trailingZeroes(int n) {int ans 0;while (n…

【个人版】SpringBoot下Spring-Security核心概念解读【二】

Spring-Security HttpSecurity Spring-Security全局导读&#xff1a; 1、Security核心类设计 2、HttpSecurity结构和执行流程解读 3、Spring-Security个人落地篇 背景&#xff1a; Spring-Security框架的核心架构上一篇已经概述&#xff0c;展示其执行流程及逻辑&#xff0c;但…

【期末考复习向】transformer的运作机制

1.transformer的encoder运作 transformer的encoder部分包括了输入和处理2大部分。首先是输入部分inputs&#xff0c;这里初始的inputs是采用独热向量进行表示的&#xff0c;随后经过word2vec等操作把独热向量&#xff08;采用独热向量的好处就是可向量是正交的&#xff0c;可以…

re:Invent 产品体验分享:Amazon ElastiCache Serverless 缓存即时扩展功能与感受

授权说明&#xff1a;本篇文章授权活动官方亚马逊云科技文章转发、改写权&#xff0c;包括不限于在亚马逊云科技开发者社区、 知乎、自媒体平台、第三方开发者媒体等亚马逊云科技官方渠道&#xff09;。 文章目录 前言产品介绍产品使用步骤1.创建缓存服务2.安全组开放访问权限…

C++从bing采集各行业的企业官网信息

作为一名合格的销售&#xff0c;除了自己的人脉&#xff0c;还应该有新鲜的客户加入并发掘。不管哪行哪业&#xff0c;知彼知己&#xff0c;方才能做到百战百胜。今天我就用我们的专业技能&#xff0c;让销售获取更多同行业的公开企业信息&#xff0c;让业绩顺风顺水。 通常在C…

如何实现电脑文件夹自动备份?以下是图解教程

在当今迅猛发展的科技时代&#xff0c;电脑已经成为不可或缺的办公工具。随着使用时间的增加&#xff0c;存储在电脑中的文件数量也逐渐增多。然而&#xff0c;由于设备故障、手动误删等原因&#xff0c;文件的丢失问题成为一个不可忽视的风险。如果丢失的文件具有重要性&#…

数学learning

目录 移动平均 简单移动平均 加权移动平均 指数移动平均 矩阵求导 矩阵对标量求导 Matrix-by-scalar 标量对矩阵求导 Scalar-by-matrix 参考博客 移动平均 优化算法里面会涉及到一个知识点&#xff1a;指数移动平均。 但是为了知识的完整性&#xff0c;这里会将常见的移动…

MCU平台下一种简单的文件系统设计构想

本文介绍MCU平台下一种简单的文件系统设计构想。 在使用MCU的项目中&#xff0c;经常会涉及到一些数据的存储&#xff0c;受限于硬件&#xff0c;又不太可能直接上文件系统&#xff08;如FAT文件系统&#xff09;&#xff0c;直接指定存储地址&#xff0c;数据长度对数据进行读…

React antd如何实现<Upload>组件上传附件再次上传已清除附件缓存问题

最近遇到一个React上传组件的问题&#xff0c;即上传附件成功后&#xff0c;文件展示处仍然还有之前上传附件的缓存信息&#xff0c;需要解决的问题是&#xff0c;要把上一次上传的附件缓存在上传成功或者取消后&#xff0c;可以进行清除 经过一顿试错&#xff0c;终于解决了这…

SE考研真题总结(二)

接上条&#xff0c;今天继续更新~ SE考研真题总结&#xff08;一&#xff09;-CSDN博客文章浏览阅读340次&#xff0c;点赞6次&#xff0c;收藏11次。本帖开始分享考研真题中设计【软件工程】的部分&#xff0c;预计会出5期左右&#xff0c;敬请期待~https://blog.csdn.net/js…

EasyRecovery(数据恢复软件) 2024中文绿色无需激活版下载

EasyRecovery是一款功能强大且专业的数据恢复软件&#xff0c;软件能够对电脑误删的文件进行恢复&#xff0c;包括格式化硬盘是数据恢复、手机U盘数据恢复等&#xff0c;小编今天给大家带来的是根据官软件解压后直接使用。感兴趣的朋友快来下载使用吧。 EasyRecovery-2024mac最…

Pytorch-CNN轴承故障一维信号分类(二)

目录 前言 1 数据集制作与加载 1.1 导入数据 1.2 数据加载&#xff0c;训练数据、测试数据分组&#xff0c;数据分batch 2 CNN-2D分类模型和训练、评估 2.1 定义CNN-2d分类模型 2.2 定义模型参数 2.3 模型结构 2.4 模型训练 2.5 模型评估 3 CNN-1D分类模型和训练、评…

flink找不到隐式项

增加 import org.apache.flink.streaming.api.scala._ 即可

改进的A*算法的路径规划(2)

子节点优化选择策略 (1)子节点选择方式 为了找到从起始点到终点的路径&#xff0c;需定义一种可以选择后续节点的方式。在 A*算法中两种常见的方法为4-邻接(见图5-7(a) 和8-邻接(见图5-7(b)), 但考虑到 在复杂越野环境上&#xff0c;我们希望智能车辆允许更多的自由运动来更…

MSF学习

之前的渗透测试中 其实很少用到 cs msf 但是在实际内网的时候 可以发现 msf cs 都是很好用的 所以现在我来学习一下 msf的使用方法 kali自带msf https://www.cnblogs.com/bmjoker/p/10051014.html 使用 msfconsole 启动即可 首先就是最正常的木马生成 所以这里其实只需…

分类预测 | Matlab实现DBO-SVM蜣螂算法优化支持向量机的数据分类预测【23年新算法】

分类预测 | Matlab实现DBO-SVM蜣螂算法优化支持向量机的数据分类预测【23年新算法】 目录 分类预测 | Matlab实现DBO-SVM蜣螂算法优化支持向量机的数据分类预测【23年新算法】分类效果基本描述程序设计参考资料 分类效果 基本描述 1.Matlab实现DBO-SVM蜣螂算法优化支持向量机的…

数理统计基础:参数估计与假设检验

在学习机器学习的过程中&#xff0c;我充分感受到概率与统计知识的重要性&#xff0c;熟悉相关概念思想对理解各种人工智能算法非常有意义&#xff0c;从而做到知其所以然。因此打算写这篇笔记&#xff0c;先好好梳理一下参数估计与假设检验的相关内容。 1 总体梳理 先从整体结…

串口通信(4)-C#串口通信入门实例

本文通过实例讲解C#串口通信。 入门实例设计一个串口助手&#xff0c;能够很好的涵盖串口要点的使用。 目录 一、成品图 二、界面文件 三、后台代码 四、实例中要点 一、成品图 如下&#xff1a; 实现的过程 创建winform项目&#xff0c;将Form1文件的名称改为MainForm&…