CCF 202104-2:邻域均值--C++

#include<iostream>
#include<bits/stdc++.h>using namespace std;int A[601][601];
int n;//长宽都为n个像素double FindNeighborSum(int i,int j,int r,int A[][601])
{int sum=0;//像素和 int gs=0;//领域 中的像素个数 for(int x=i-r;x<=i+r;x++)//找到每一个领域像素点 {for(int y=j-r;y<=j+r;y++){if(x>=0&&x<n){if(y>=0&&y<n){sum+=A[x][y];gs++;}}}}double result=(double)sum/gs;//要用double不能用int,不然等于t的数量会变多 return result;//
}int main()
{int L;//像素的取值范围int r;//领域的范围int t;//阈值,当领域内的均值小于或等于阈值t时是较暗区域cin>>n>>L>>r>>t;for(int i=0;i<n;i++){for(int j=0;j<n;j++)cin>>A[i][j];}int sum=0;//记录较暗区域个数 for(int i=0;i<n;i++){for(int j=0;j<n;j++)//对每一个像素点分析 {if(FindNeighborSum(i,j,r,A)<=t) sum++;}}cout<<sum;return 0;
}
暴力求解:70分,要返回一个double类型的值,不然的话有些不是较暗区域的点也会被计为较暗区域

原本我想 分区域来运算,当邻域像素点个数为最大值(2*r+1)*(2*r+1)时用二维差分,否则用暴力

但是还是会超时

#include<iostream>
#include<bits/stdc++.h>using namespace std;int A[601][601];
int n;//长宽都为n个像素int d[601][601];//记录(i,j)点的前缀和 double FindNeighborSum(int i,int j,int r,int A[][601])
{int suml=0;//像素和 int gs=0;//领域 中的像素个数 for(int x=i-r;x<=i+r;x++)//找到每一个领域像素点 {for(int y=j-r;y<=j+r;y++){if(x>=0&&x<n){if(y>=0&&y<n){suml+=A[x][y];gs++;}}}}double result=(double)suml/gs;//要用double不能用int,不然等于t的数量会变多 return result;//
}int main()
{int L;//像素的取值范围int r;//领域的范围int t;//阈值,当领域内的均值小于或等于阈值t时是较暗区域memset(d,0,sizeof d);//将d清零 cin>>n>>L>>r>>t;for(int i=0;i<n;i++){for(int j=0;j<n;j++){cin>>A[i][j];d[i][j]=d[i][j-1]+d[i-1][j]-d[i-1][j-1]+A[i][j]; //cout<<d[i][j]<<endl;}}int sum=0;//记录较暗区域个数 int NeighborSum=0;//记录邻域中像素数值之和 double NeighborAvg=0;for(int i=0;i<n;i++){for(int j=0;j<n;j++)//对每一个像素点分析 {	if(i-r>=0&&i+r<n&&j-r>=0&&j+r<n)//分区域来运算,当邻域像素点个数为最大值(2*r+1)*(2*r+1)时用差分,否则用暴力{NeighborSum=d[i+r][j+r]-d[i+r][j-r-1]-d[i-r-1][j+r]+d[i-r-1][j-r-1];NeighborAvg=(double)NeighborSum/((2*r+1)*(2*r+1));if(NeighborAvg<=t) sum++;}else{//邻域的上下左右有些地方不全 if(FindNeighborSum(i,j,r,A)<=t) sum++;	  } }}cout<<sum;return 0;
}

从上面的分区域到下面的满分优化,关键是怎么得到邻域的像素点个数,上面的分区域方法如果所判断的像素点(i,j)的邻域没有缺少,即邻域像素点个数达到最大(2*r-1)*(2*r-1),如果(i,j)的邻域不完整,那就暴力的一个一个判断使得gs++来得到邻域中像素点的个数。

可以通过邻域的上下左右来求得邻域中像素点的个数

如图,如果此时红色笔圈起来的数7是当前判断到的像素,设为(i,j),r=2, 那么(i,j)的邻域就应该是如图画的正方形,红色直线=left=j-r;  橙色直线=right=j+r ,蓝色直线=top=i-r;绿色直线=buttom=i+r;

所以这个邻域中像素点的个数 等于 (right-left+1)*(buttom-top+1)

这是理想的情况,即邻域是完整的

当邻域不完整时,应该通过判断来调整上下左右的取值,但是像素点个数求法还是一样的

              if(i-r<0)//上边不够
                top=0;
                else//上边够那么可能下边不够 
                {
                if(i+r>=n)//下边不够 
                buttom=n-1;    
                }
                
                
                if(j-r<0)//左边不够
                left=0;
                else      
                if(j+r>=n)//右边不够
                right=n-1; 

再用前缀和来求解一个区域中像素点的数值和


优化:用二维差分,记录一下我的第一次自己优化 

#include<iostream>
#include<bits/stdc++.h>using namespace std;int A[601][601];
int n;//长宽都为n个像素int d[601][601];//记录(i,j)点的前缀和 int main()
{int L;//像素的取值范围int r;//领域的范围int t;//阈值,当领域内的均值小于或等于阈值t时是较暗区域memset(d,0,sizeof d);//将d清零 cin>>n>>L>>r>>t;for(int i=0;i<n;i++){for(int j=0;j<n;j++){cin>>A[i][j];d[i][j]=d[i][j-1]+d[i-1][j]-d[i-1][j-1]+A[i][j]; //cout<<d[i][j]<<endl;}}int sum=0;//记录较暗区域个数 int NeighborSum=0;//记录邻域中像素数值之和 double NeighborAvg=0;int Neighbor=0;//记录邻域中像素个数 int left=0,right=0,top=0,buttom=0;//记录邻域的上下左右,方便计数 for(int i=0;i<n;i++){for(int j=0;j<n;j++)//对每一个像素点分析 {//首先将邻域当作理想情况,后面通过判断再调整top=i-r;buttom=i+r;left=j-r;right=j+r;if(i-r<0)//上边不够top=0;else//上边够那么可能下边不够 {if(i+r>=n)//下边不够 buttom=n-1;	}if(j-r<0)//左边不够left=0;else	  if(j+r>=n)//右边不够right=n-1; Neighbor=(buttom-top+1)*(right-left+1); //邻域中像素点个数 NeighborSum=d[buttom][right]-d[buttom][left-1]-d[top-1][right]+d[top-1][left-1];//cout<<NeighborSum<<endl;NeighborAvg=(double)NeighborSum/Neighbor;if(NeighborAvg<=t) sum++;} }cout<<sum;return 0;
}

我自己的理解,之前看过一篇特别好的差分法的文章,可惜找不到了

差分法就是在输入的时候求得对应位置的前缀和,当你需要对某个区间或区域进行加减时不用一个一个加减,直接对前缀和数组操作

一维差分:
int n=10;
for(int i=0;i<n;i++)
{
cin>>A[i];
d[i]=d[i-1]+A[i];//前缀和数组,代表第i位以及前面所有数据的和
}//对[1,5]的数据全部加1
d[1]+=1;
d[5]-=1;//只需要对区间两端的前缀和数组进行操作即可
//A[i]=d[i]-d[i-1];//得到新的加一之和的值

例题:非零段划分202109-2 非零段划分--C++-CSDN博客    

二维差分:
for(int i=0;i<n;i++)
{
for(int j=0;j<n;j++)
{
cin>>A[i][j];
d[i][j]=d[i][j-1]+d[i-1][j]-d[i-1][j-1]+A[i][j];
}
}

当i=3,j=3时,d[i][j]就是如图左上角的所有数之和

这样我们通过输入就可以得到每一个数的二维前缀和,当我们想要求一个区域的所有数之和(在本题中相对于求邻域中的所有数值之和),当我们想要求红色区域的所有数之和,可以用黄色区域所有数之和即d[4][5],减去蓝色区域所有数之和即d[4][2],再减去粉色区域所有数之和即d[1][5],重复减去的区域要加回来,加上d[2][2],就可以得到想要求的区域的所有数之和

差分法~超详细(公式+原理+例题)-CSDN博客

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/220089.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

异步导入中使用SecurityUtils.getSubject().getPrincipal()获取LoginUser对象导致的缓存删除失败问题

结论 SecurityUtils.getSubject().getPrincipal()实际用的也是ThreadLocal&#xff0c;而ThreadLocal和线程绑定&#xff0c;异步会导致存数据丢失&#xff0c;注意&#xff01; 业务背景 最近&#xff0c;系统偶尔会出现excel导入成功&#xff0c;但系统却提示存在进行中的…

数据分析基础之《numpy(3)—基本操作》

一、基本操作 1、adarray.方法() 2、np.函数名() 二、生成数组的方法 1、生成0和1的数组 为什么需要生成0和1的数组&#xff1f; 我们需要占用位置&#xff0c;或者生成一个空的数组 &#xff08;1&#xff09;ones(shape[, dtype, order]) 生成一组1 shape&#xff1a;形…

Ubuntu20.04 Nano编辑器使用指南(Nano vs Vim vs Emacs)

文章目录 Ubuntu 20.04中Nano编辑器的使用指南目录安装Nano打开与关闭NanoNano基础操作向左移动光标向右移动光标向上移动光标向下移动光标删除字符添加字符 在Nano中查找与替换文本文件保存与退出Nano快捷键大全光标移至行首光标移至行尾向上滚动一页向下滚动一页移至文件开始…

NOIP2017提高组day2 - T2:宝藏

题目链接 [NOIP2017 提高组] 宝藏 题目描述 参与考古挖掘的小明得到了一份藏宝图&#xff0c;藏宝图上标出了 n n n 个深埋在地下的宝藏屋&#xff0c; 也给出了这 n n n 个宝藏屋之间可供开发的 m m m 条道路和它们的长度。 小明决心亲自前往挖掘所有宝藏屋中的宝藏。但…

【沐风老师】科研绘图3DMAX病毒建模教程

3dMax在科研绘图方面也有广泛的应用&#xff0c;本教程就给大家讲解病毒的建模方法&#xff0c;下面直接进入教程&#xff1a; 3dMax病毒建模方法&#xff1a; 1.启动3dMax&#xff0c;在视口中创建一个“几何球体”。方法&#xff1a;右边命令面板->创建->几何体->…

mysql 导入时遇到 的解决 Variable ‘time_zone‘ can‘t、‘character_set_client‘问题

mysql在导入文件时&#xff0c;提示如下错误 ERROR 1231 (42000): Variable ‘time_zone‘ can‘t be set to the value of ‘NULL‘ ERROR 1231 (42000): Variable ‘sql_mode‘ can‘t be set to the value of ‘NULL‘ ERROR 1231 (42000): Variable ‘foreign_key_checks‘…

MySQL中EXPLAIN执行计划的分析

一. 执行计划能告诉我们什么&#xff1f; SQL如何使用索引联接查询的执行顺序查询扫描的数据函数 二. 执行计划中的内容 SQL执行计划的输出可能为多行&#xff0c;每一行代表对一个数据库对象的操作 1. ID列 ID列中的如果数据为一组数字&#xff0c;表示执行SELECT语句的顺…

当当狸AR智能学习图集跨越千年文明传承,邀您“面对面”与虚拟诗人互动对诗

中华传统文化底蕴深厚&#xff0c;余韵悠长。即使经过千年的历史裂变&#xff0c;依然历久铭心慰藉着一代又一代人的灵魂。千百年后的今天&#xff0c;成为了我们独一无二的财富。 如今&#xff0c;国人学习中华传统文化的方式有很多&#xff0c;诗词集、动画影片、诗歌传颂等…

主流机器学习框架及区别

主流的机器学习框架 主流的机器学习框架包括&#xff1a; TensorFlow&#xff1a;是由Google开发的开源机器学习框架&#xff0c;最早用于深度神经网络的构建和训练&#xff0c;现已广泛应用于各种机器学习任务。TensorFlow具有高度灵活性和可扩展性&#xff0c;支持在不同平台…

Java,这是一个模仿HashMap的put,get功能的自定义MyHashMap

Java 手写HashMap源码 一&#xff0c;手写源码 这是一个模仿HashMap的put&#xff0c;get功能的自定义的MyHashMap package cn.wxs.demo;import java.io.Serializable; import java.util.*; import java.util.function.BiConsumer; import java.util.function.BiFunction; i…

linux 内核同步互斥技术之实时互斥锁

实时互斥锁是对互斥锁的改进&#xff0c;实现了优先级继承&#xff08; priority inheritance&#xff09;&#xff0c;解决了优先级反转&#xff08; priority inversion&#xff09;问题。 什么是优先级反转问题&#xff1f; 假设进程 1 的优先级低&#xff0c;进程 2 的优先…

springboot 获取路径

PostConstructpublic void setup() {try {// jar包所在目录 /Users/mashanshanString path this.getClass().getProtectionDomain().getCodeSource().getLocation().getPath();System.out.println("path:" path); // file:/Users/mashanshan/manual-admin-0.0.1-…

PHP中的trait是什么?

Trait 是 PHP 中一种代码复用的机制&#xff0c;允许在类之间复用方法集合。Trait 提供了一种方式&#xff0c;使得类可以在不使用继承的情况下引入和重用方法。Trait 是一种水平代码复用机制&#xff0c;与类的继承机制不同&#xff0c;一个类可以使用多个 Trait。 以下是 Tr…

SIM初始化流程

ATR ATR(Answer To Reset)&#xff1a;复位应答信号&#xff0c;有SIM卡传输给终端&#xff0c;包括SIM卡自身的一些信息&#xff0c;比如支持的传输速率&#xff0c;传输模式等。 SIM卡的ATR代表"Answer to Reset"&#xff0c;即复位响应。当SIM卡被插入设备中时…

Linux驱动入门 —— 利用引脚号操作GPIO进行LED点灯

目录 一、字符设备驱动程序框架 编写驱动程序的步骤&#xff1a; 对于 LED 驱动&#xff0c;我们想要什么样的接口&#xff1f; LED 驱动能支持多个板子的基础&#xff1a;分层思想 二、Linux驱动如何指向一个GPIO 直接通过寄存器来操作GPIO 利用引脚号操作GPIO IMX6UL…

Narayana事务回滚流程

Narayana 事务回滚流程 当用户手动调用 connection.rollback() 回滚当前全局事务时&#xff0c;会走如下流程。 总体流程 遍历每个 resource执行 xa end;执行 xa rollback; 清理缓存使用 TransactionManager transactionManager jtaPropertyManager.getJTAEnvironmentBean…

算法通关村第十八关-黄金挑战回溯困难问题

大家好我是苏麟 , 今天带来几道回溯比较困难的题 . 回溯有很多比较难的问题&#xff0c;这里我们看两个&#xff0c;整体来说这两个只是处理略复杂&#xff0c;还不是最难的问题 . 大纲 IP问题 IP问题 描述 : 有效 IP 地址 正好由四个整数&#xff08;每个整数位于 0 到 255 …

redis:一、面试题常见分类+缓存穿透的定义、解决方案、布隆过滤器的原理和误判现象、面试回答模板

redis面试题常见分类 缓存穿透 定义 缓存穿透是一种现象&#xff0c;引发这种现象的原因大概率是遭到了恶意攻击。具体就是查询一个一定不存在的数据&#xff0c;mysql查询不到数据也不会直接写入缓存&#xff0c;就会导致这个数据的每次请求都需要查DB&#xff0c;数据库压力…

# 和 $ 的区别①

# 和 $ 都是为了获取变量的值 # 和 $ 区别 : 使用 # 查询 id 为 1 的内容 如果看不懂代码,就去看<<Mybatis 的操作(结合上文)续集>>,我这里为了简练一点就不多解释了 Select("select * from userInfo where id #{id}")UserInfo selectOne(Integer id…

Hive命令操作

1.命令行模式 1. 获取帮助 --> hive -H 或-help 2. 运行hive语句 --> hive -e "执行语句" 3. 运行hive文件 --> hive –f "执行文件" 4. 定义变量 --> hive –hivevar keyvalue 5. 引用变量 --> ${varname} 2. 交互模式 1. 进入客户端 -…