代码随想录算法训练营 | day50 动态规划 123.买卖股票的最佳时机Ⅲ,188.买卖股票的最佳时机Ⅳ

刷题

123.买卖股票的最佳时机Ⅲ

题目链接 | 文章讲解 | 视频讲解

题目:给定一个数组,它的第 i 个元素是一支给定的股票在第 i 天的价格。

设计一个算法来计算你所能获取的最大利润。你最多可以完成 两笔 交易。

注意:你不能同时参与多笔交易(你必须在再次购买前出售掉之前的股票)。

  • 示例 1:

  • 输入:prices = [3,3,5,0,0,3,1,4]

  • 输出:6 解释:在第 4 天(股票价格 = 0)的时候买入,在第 6 天(股票价格 = 3)的时候卖出,这笔交易所能获得利润 = 3-0 = 3 。随后,在第 7 天(股票价格 = 1)的时候买入,在第 8 天 (股票价格 = 4)的时候卖出,这笔交易所能获得利润 = 4-1 = 3。

  • 示例 2:

  • 输入:prices = [1,2,3,4,5]

  • 输出:4 解释:在第 1 天(股票价格 = 1)的时候买入,在第 5 天 (股票价格 = 5)的时候卖出, 这笔交易所能获得利润 = 5-1 = 4。注意你不能在第 1 天和第 2 天接连购买股票,之后再将它们卖出。因为这样属于同时参与了多笔交易,你必须在再次购买前出售掉之前的股票。

  • 示例 3:

  • 输入:prices = [7,6,4,3,1]

  • 输出:0 解释:在这个情况下, 没有交易完成, 所以最大利润为0。

  • 示例 4:

  • 输入:prices = [1] 输出:0

提示:

  • 1 <= prices.length <= 10^5

  • 0 <= prices[i] <= 10^5

思路及实现

动态规划五部曲:

1.确定dp数组以及下标的含义

一天一共就有五个状态,

0.没有操作 (其实我们也可以不设置这个状态)

  1. 第一次持有股票

  2. 第一次不持有股票

  3. 第二次持有股票

  4. 第二次不持有股票

dp[i] [j]中 i表示第i天,j为 [0 - 4] 五个状态,dp[i] [j]表示第i天状态j所剩最大现金。

需要注意:dp[i] [1],表示的是第i天,买入股票的状态,并不是说一定要第i天买入股票,这是很多同学容易陷入的误区

例如 dp[i] [1] ,并不是说 第i天一定买入股票,有可能 第 i-1天 就买入了,那么 dp[i] [1] 延续买入股票的这个状态。

2.确定递推公式

达到dp[i] [1]状态,有两个具体操作:

  • 操作一:第i天买入股票了,那么dp[i] [1] = dp[i-1] [0] - prices[i]

  • 操作二:第i天没有操作,而是沿用前一天买入的状态,即:dp[i] [1] = dp[i - 1] [1]

那么dp[i] [1]究竟选 dp[i-1] [0] - prices[i],还是dp[i - 1] [1]呢?

一定是选最大的,所以 dp[i] [1] = max(dp[i-1] [0] - prices[i], dp[i - 1] [1]);

同理dp[i] [2]也有两个操作:

  • 操作一:第i天卖出股票了,那么dp[i] [2] = dp[i - 1] [1] + prices[i]

  • 操作二:第i天没有操作,沿用前一天卖出股票的状态,即:dp[i] [2] = dp[i - 1] [2]

所以dp[i] [2] = max(dp[i - 1] [1] + prices[i], dp[i - 1] [2])

同理可推出剩下状态部分:

dp[i] [3] = max(dp[i - 1] [3], dp[i - 1] [2] - prices[i]);

dp[i] [4] = max(dp[i - 1] [4], dp[i - 1] [3] + prices[i]);

3.dp数组如何初始化

第0天没有操作,这个最容易想到,就是0,即:dp[0] [0] = 0;

第0天做第一次买入的操作,dp[0] [1] = -prices[0];

第0天做第一次卖出的操作,这个初始值应该是多少呢?

此时还没有买入,怎么就卖出呢? 其实大家可以理解当天买入,当天卖出,所以dp[0] [2] = 0;

第0天第二次买入操作,初始值应该是多少呢?应该不少同学疑惑,第一次还没买入呢,怎么初始化第二次买入呢?

第二次买入依赖于第一次卖出的状态,其实相当于第0天第一次买入了,第一次卖出了,然后再买入一次(第二次买入),那么现在手头上没有现金,只要买入,现金就做相应的减少。

所以第二次买入操作,初始化为:dp[0] [3] = -prices[0];

同理第二次卖出初始化dp[0] [4] = 0;

4.确定遍历顺序

从递归公式其实已经可以看出,一定是从前向后遍历,因为dp[i],依靠dp[i - 1]的数值。

5.举例推导dp数组

以输入[1,2,3,4,5]为例

大家可以看到红色框为最后两次卖出的状态。

现在最大的时候一定是卖出的状态,而两次卖出的状态现金最大一定是最后一次卖出。如果想不明白的录友也可以这么理解:如果第一次卖出已经是最大值了,那么我们可以在当天立刻买入再立刻卖出。所以dp4已经包含了dp4的情况。也就是说第二次卖出手里所剩的钱一定是最多的。

所以最终最大利润是dp[4] [4]

以上五部都分析完了,不难写出如下代码:

/ 版本一
class Solution {public int maxProfit(int[] prices) {int len = prices.length;// 边界判断, 题目中 length >= 1, 所以可省去if (prices.length == 0) return 0;
​/** 定义 5 种状态:* 0: 没有操作, 1: 第一次买入, 2: 第一次卖出, 3: 第二次买入, 4: 第二次卖出*/int[][] dp = new int[len][5];dp[0][1] = -prices[0];// 初始化第二次买入的状态是确保 最后结果是最多两次买卖的最大利润dp[0][3] = -prices[0];
​for (int i = 1; i < len; i++) {dp[i][1] = Math.max(dp[i - 1][1], -prices[i]);dp[i][2] = Math.max(dp[i - 1][2], dp[i - 1][1] + prices[i]);dp[i][3] = Math.max(dp[i - 1][3], dp[i - 1][2] - prices[i]);dp[i][4] = Math.max(dp[i - 1][4], dp[i - 1][3] + prices[i]);}
​return dp[len - 1][4];}
}
​
// 版本二: 空间优化
class Solution {public int maxProfit(int[] prices) {int[] dp = new int[4]; // 存储两次交易的状态就行了// dp[0]代表第一次交易的买入dp[0] = -prices[0];// dp[1]代表第一次交易的卖出dp[1] = 0;// dp[2]代表第二次交易的买入dp[2] = -prices[0];// dp[3]代表第二次交易的卖出dp[3] = 0;for(int i = 1; i <= prices.length; i++){// 要么保持不变,要么没有就买,有了就卖dp[0] = Math.max(dp[0], -prices[i-1]);dp[1] = Math.max(dp[1], dp[0]+prices[i-1]);// 这已经是第二次交易了,所以得加上前一次交易卖出去的收获dp[2] = Math.max(dp[2], dp[1]-prices[i-1]);dp[3] = Math.max(dp[3], dp[2]+ prices[i-1]);}return dp[3];}
}

188.买卖股票的最佳时机Ⅳ

题目链接 | 文章讲解 | 视频讲解

题目:给定一个整数数组 prices ,它的第 i 个元素 prices[i] 是一支给定的股票在第 i 天的价格。

设计一个算法来计算你所能获取的最大利润。你最多可以完成 k 笔交易。

注意:你不能同时参与多笔交易(你必须在再次购买前出售掉之前的股票)。

  • 示例 1:

  • 输入:k = 2, prices = [2,4,1]

  • 输出:2 解释:在第 1 天 (股票价格 = 2) 的时候买入,在第 2 天 (股票价格 = 4) 的时候卖出,这笔交易所能获得利润 = 4-2 = 2。

  • 示例 2:

  • 输入:k = 2, prices = [3,2,6,5,0,3]

  • 输出:7 解释:在第 2 天 (股票价格 = 2) 的时候买入,在第 3 天 (股票价格 = 6) 的时候卖出, 这笔交易所能获得利润 = 6-2 = 4。随后,在第 5 天 (股票价格 = 0) 的时候买入,在第 6 天 (股票价格 = 3) 的时候卖出, 这笔交易所能获得利润 = 3-0 = 3 。

提示:

  • 0 <= k <= 100

  • 0 <= prices.length <= 1000

  • 0 <= prices[i] <= 1000

思路及实现

动规五部曲,分析如下:

1.确定dp数组以及下标的含义

在动态规划:123.买卖股票的最佳时机III 中,我是定义了一个二维dp数组,本题其实依然可以用一个二维dp数组。

使用二维数组 dp[i] [j] :第i天的状态为j,所剩下的最大现金是dp[i] [j]

j的状态表示为:

  • 0 表示不操作

  • 1 第一次买入

  • 2 第一次卖出

  • 3 第二次买入

  • 4 第二次卖出

  • .....

大家应该发现规律了吧 ,除了0以外,偶数就是卖出,奇数就是买入

题目要求是至多有K笔交易,那么j的范围就定义为 2 * k + 1 就可以了。

2.确定递推公式

还要强调一下:dp[i] [1],表示的是第i天,买入股票的状态,并不是说一定要第i天买入股票,这是很多同学容易陷入的误区

达到dp[i] [1]状态,有两个具体操作:

  • 操作一:第i天买入股票了,那么dp[i] [1] = dp[i - 1] [0] - prices[i]

  • 操作二:第i天没有操作,而是沿用前一天买入的状态,即:dp[i] [1] = dp[i - 1] [1]

选最大的,所以 dp[i] [1] = max(dp[i - 1] [0] - prices[i], dp[i - 1] [1]);

同理dp[i] [2]也有两个操作:

  • 操作一:第i天卖出股票了,那么dp[i] [2] = dp[i - 1] [1] + prices[i]

  • 操作二:第i天没有操作,沿用前一天卖出股票的状态,即:dp[i] [2] = dp[i - 1] [2]

所以dp[i] [2] = max(dp[i - 1] [1] + prices[i], dp[i - 1] [2])

本题和动态规划:123.买卖股票的最佳时机III最大的区别就是这里要类比j为奇数是买,偶数是卖的状态

3.dp数组如何初始化

第0天没有操作,这个最容易想到,就是0,即:dp[0] [0] = 0;

第0天做第一次买入的操作,dp[0] [1] = -prices[0];

第0天做第一次卖出的操作,这个初始值应该是多少呢?

此时还没有买入,怎么就卖出呢? 其实大家可以理解当天买入,当天卖出,所以dp[0] [2] = 0;

第0天第二次买入操作,初始值应该是多少呢?应该不少同学疑惑,第一次还没买入呢,怎么初始化第二次买入呢?

第二次买入依赖于第一次卖出的状态,其实相当于第0天第一次买入了,第一次卖出了,然后在买入一次(第二次买入),那么现在手头上没有现金,只要买入,现金就做相应的减少。

所以第二次买入操作,初始化为:dp[0] [3] = -prices[0];

第二次卖出初始化dp[0] [4] = 0;

所以同理可以推出dp[0] [j]当j为奇数的时候都初始化为 -prices[0]

在初始化的地方同样要类比j为偶数是卖、奇数是买的状态

4.确定遍历顺序

从递归公式其实已经可以看出,一定是从前向后遍历,因为dp[i],依靠dp[i - 1]的数值。

5.举例推导dp数组

以输入[1,2,3,4,5],k=2为例。

最后一次卖出,一定是利润最大的,dp[prices.length() - 1] [2 * k]即红色部分就是最后求解。

以上分析完毕,代码如下:

class Solution {public int maxProfit(int k, int[] prices) {if (prices.length == 0) return 0;// [天数][交易次数][是否持有股票]int len = prices.length;int[][][] dp = new int[len][k + 1][2];// dp数组初始化// 初始化所有的交易次数是为确保 最后结果是最多 k 次买卖的最大利润for (int i = 0; i <= k; i++) {dp[0][i][1] = -prices[0];}for (int i = 1; i < len; i++) {for (int j = 1; j <= k; j++) {// dp方程, 0表示不持有/卖出, 1表示持有/买入dp[i][j][0] = Math.max(dp[i - 1][j][0], dp[i - 1][j][1] + prices[i]);dp[i][j][1] = Math.max(dp[i - 1][j][1], dp[i - 1][j - 1][0] - prices[i]);}}return dp[len - 1][k][0];}
}// 版本二: 二维 dp数组
class Solution {public int maxProfit(int k, int[] prices) {if (prices.length == 0) return 0;// [天数][股票状态]// 股票状态: 奇数表示第 k 次交易持有/买入, 偶数表示第 k 次交易不持有/卖出, 0 表示没有操作int len = prices.length;int[][] dp = new int[len][k*2 + 1];// dp数组的初始化, 与版本一同理for (int i = 1; i < k*2; i += 2) {dp[0][i] = -prices[0];}for (int i = 1; i < len; i++) {for (int j = 0; j < k*2 - 1; j += 2) {dp[i][j + 1] = Math.max(dp[i - 1][j + 1], dp[i - 1][j] - prices[i]);dp[i][j + 2] = Math.max(dp[i - 1][j + 2], dp[i - 1][j + 1] + prices[i]);}}return dp[len - 1][k*2];}
}//版本三:一维 dp数组 (下面有和卡哥邏輯一致的一維數組JAVA解法)
class Solution {public int maxProfit(int k, int[] prices) {if(prices.length == 0){return 0;}if(k == 0){return 0;}// 其实就是123题的扩展,123题只用记录2次交易的状态// 这里记录k次交易的状态就行了// 每次交易都有买入,卖出两个状态,所以要乘 2int[] dp = new int[2 * k];// 按123题解题格式那样,做一个初始化for(int i = 0; i < dp.length / 2; i++){dp[i * 2] = -prices[0];}for(int i = 1; i <= prices.length; i++){dp[0] = Math.max(dp[0], -prices[i - 1]);dp[1] = Math.max(dp[1], dp[0] + prices[i - 1]);// 还是与123题一样,与123题对照来看// 就很容易啦for(int j = 2; j < dp.length; j += 2){dp[j] = Math.max(dp[j], dp[j - 1] - prices[i-1]);dp[j + 1] = Math.max(dp[j + 1], dp[j] + prices[i - 1]);}}// 返回最后一次交易卖出状态的结果就行了return dp[dp.length - 1];}
}

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/218054.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

获取CAD图元名及图元信息(circle为例,用于选择集,对应dxf组码)

在CAD编程中往往需要用选择集&#xff0c;我们往往不知道相应图元对应的名称具体名字。比如我想选择所有的圆&#xff0c;ftype0,fdata应该是什么呢&#xff1f;是circle&#xff0c;acdbcircle&#xff0c;还是acadcircle? circle是一个对象&#xff0c;circle的vba类名为Ac…

SAP 散装物料简介

散装物料(Bulk Material),也叫做间接物料(Indirect Material),是一般企业在库存管理时常见的一种物料形式。散装物料专指那些价值小、消耗量大、消耗率高的物料件。这些物料组件同样服务于企业的生产活动,并且在企业的工作中心中被生产活动直接消耗(如螺丝钉、润滑油、…

海底数据中心:数据存储未来发展的新方向

随着信息技术的快速发展&#xff0c;数据需求量呈指数级增长&#xff0c;数据中心作为数据处理和存储的重要基础设施&#xff0c;其地位和作用愈发凸显。然而&#xff0c;传统的数据中心由于能耗大、碳排放高、土地占用等问题&#xff0c;已经难以满足可持续发展的需求。在此背…

Swin UNetR:把 UNet 和 Swin Transformer 结合

Swin UNetR&#xff1a;把 UNet 和 Swin Transformer 结合 网络结构使用指南 前置知识&#xff1a;Swin Transformer&#xff1a;将卷积网络和 Transformer 结合 Swin UNetR 结合 Swin Transformer 的上下文建模能力和 U-Net 的像素级别预测能力&#xff0c;提高语义分割任务的…

初始数据库 - 了解数据库

centos 7 版本当中安装 mysql 安装与卸载中&#xff0c;⽤⼾全部切换成为root&#xff0c;⼀旦 安装&#xff0c;普通⽤⼾是可以使用的。 卸载不需要的环境 首先&#xff0c;在安装之前&#xff0c;要先确定你当前系统当中是否已经有了mysql 的环境&#xff0c;如果你不想卸…

maui下sqlite演示增删改查

数据操作类 有分页 todoitemDatabase.cs&#xff1a; using SQLite; using TodoSQLite.Models;namespace TodoSQLite.Data {public class TodoItemDatabase{SQLiteAsyncConnection Database;public TodoItemDatabase(){}// 初始化数据库连接和表async Task Init(){if (Databa…

积雪深度智能化监测JL-29 雪深监测仪

积雪深度智能化监测JL-29 雪深监测仪产品简介 该设备通过安装于固定高度的可视激光探测传感器采用相位差式测量方法对雪深数据连续在线监测。同时&#xff0c;根据长期使用情况需要&#xff0c;提供连续准确的数据支持。可在无人值守的恶劣环境下全自动正常运行&#xff0c;并…

PPT插件-好用的插件-字距快速设置-大珩助手

字距快速设置 包含两端对齐、段首缩进、取消缩进、字间距、行间距、段后距 段首缩进 每次缩进两个字符&#xff0c;可对选中的文字、选中的多个文本对象两个层级操作 取消缩进 将缩进取消&#xff0c;可对选中的文字、选中的多个文本对象两个层级操作 字间距 预设了常用…

【GlobalMapper精品教程】065:连接SQL Server空间数据库并加载数据

Global Mapper是一个地图创建和编辑工具,无法像ArcGIS一样,基于SQL Server等大型关系型数据库。它本身也并不直接连接数据库。但是,Global Mapper可以与其他软件集成,以从数据库中获取数据并在地图上显示。本文讲述Global Mapper连接SLQ Server数据库的方法。 一、创建数据…

深入理解 Goroutines 和 Go Scheduler

本文将重点帮助您了解 Golang 中的 goroutines。Go 调度程序如何工作以在 Go 中实现最佳并发性能。我会尽力用简单的语言解释,这样你就可以理解了。 我们将介绍什么是操作系统中的线程和进程,什么是并发,为什么实现并发很难,以及 goroutines 如何帮助我们实现并发。然后,…

AtCoder ABC周赛2023 12/10 (Sun) D题题解

目录 原题截图&#xff1a; 题目大意&#xff1a; 主要思路&#xff1a; 注&#xff1a; 代码&#xff1a; 原题截图&#xff1a; 题目大意&#xff1a; 给定两个 的矩阵 和 。 你每次可以交换矩阵 的相邻两行中的所有元素或是交换两列中的所有元素。 请问要使 变换至…

JVM虚拟机系统性学习-垃圾回收器Serial、ParNew、Parallel Scavenge和Parallel Old

垃圾回收器 有 8 种垃圾回收器&#xff0c;分别用于不同分代的垃圾回收&#xff1a; 新生代回收器&#xff1a;Serial、ParNew、Parallel Scavenge老年代回收器&#xff1a;Serial Old、Parallel Old、CMS整堆回收器&#xff1a;G1、ZGC Serial&#xff1a;串行回收 Serial是…

RT-DETR改进策略:双动态令牌混合器(D-Mixer)的TransXNet,实现RT-DETR的有效涨点

摘要 双动态令牌混合器(D-Mixer),一种输入依赖的方式聚合全局信息和局部细节。D-Mixer通过分别在均匀分割的特征片段上应用有效的全局注意力模块和输入依赖的深度卷积,使网络具有强大的归纳偏差和扩大的有效感受野。使用D-Mixer作为基本构建块设计了TransXNet,这是一种新…

Unity中实现ShaderToy卡通火(总结篇)

文章目录 前言一、把卡通火修改为后处理效果1、在Shader属性面板定义属性接收帧缓存纹理2、在片元着色器对其纹理采样后&#xff0c;与卡通火相加输出请添加图片描述 二、我们自定义卡通火1、修改 _CUTOFF 使卡通火显示在屏幕两侧2、使火附近屏幕偏红色 前言 在之前的文章中&a…

【IC验证】perl脚本——分析前/后仿用例回归情况

目录 1 脚本名称 2 脚本使用说明 3 nocare_list文件示例 4 脚本执行方法 5 postsim_result.log文件示例 6 脚本代码 1 脚本名称 post_analysis 2 脚本使用说明 help&#xff1a;打印脚本说明信息 命令&#xff1a;post_analysis help 前/后仿结束后&#xff0c;首先填…

计算机毕业设计 SpringBoot的企业内管信息化系统 Javaweb项目 Java实战项目 前后端分离 文档报告 代码讲解 安装调试

&#x1f34a;作者&#xff1a;计算机编程-吉哥 &#x1f34a;简介&#xff1a;专业从事JavaWeb程序开发&#xff0c;微信小程序开发&#xff0c;定制化项目、 源码、代码讲解、文档撰写、ppt制作。做自己喜欢的事&#xff0c;生活就是快乐的。 &#x1f34a;心愿&#xff1a;点…

首场“解数Talk” 直播来了——大模型语料数据联盟开源数据集解读

一、解数 Talk 介绍 为帮助广大开发者更好地了解大模型语料数据联盟发布的AI大模型语料数据&#xff0c;沟通大模型企业在AI视角下的数据需求&#xff0c;不断服务大模型产业生态和落地应用&#xff0c;联盟发起单位上海人工智能实验室联合成员单位共同打造“解数 Talk”系列直…

java系列-LinkedHashMap怎么实现LRU

1.定义变量accessOrder public class LinkedHashMap<K,V> extends HashMap<K,V> implements Map<K,V> {final boolean accessOrder;public LinkedHashMap(int initialCapacity, float loadFactor, boolean accessOrder) {super(initialCapacity, loadFactor…

《地理信息系统原理》笔记/期末复习资料(9. 网络地理信息系统)

目录 9. 网络地理信息系统 9.1. 概述 9.1.1. 网络GIS概念 9.1.2. 网络GIS体系结构 9.1.3. 网络GIS内容体系 9.2. 分布式网络GIS 9.2.1. 分布式网络GIS概念 9.2.2. 分布式主要技术 9.3. WebGIS 9.3.1. WebGIS概念 9.3.2. WebGIS分类与特点 9.3.3. WebGIS技术框架 9…

自建 SMTP 邮件发送服务

搭建自己的 SMTP 邮件发送服务器 序言 SMTP 可以直接购买云厂商的服务&#xff0c;比如 : Amazon SES SMTP 阿里云邮件推送 也可以自己搭建邮件服务器 —— 发送不限量&#xff0c;综合成本低。 下面&#xff0c;我们一步一步的演示如何自建邮件服务器。 服务器选购 自托管的…