刷题
123.买卖股票的最佳时机Ⅲ
题目链接 | 文章讲解 | 视频讲解
题目:给定一个数组,它的第 i 个元素是一支给定的股票在第 i 天的价格。
设计一个算法来计算你所能获取的最大利润。你最多可以完成 两笔 交易。
注意:你不能同时参与多笔交易(你必须在再次购买前出售掉之前的股票)。
-
示例 1:
-
输入:prices = [3,3,5,0,0,3,1,4]
-
输出:6 解释:在第 4 天(股票价格 = 0)的时候买入,在第 6 天(股票价格 = 3)的时候卖出,这笔交易所能获得利润 = 3-0 = 3 。随后,在第 7 天(股票价格 = 1)的时候买入,在第 8 天 (股票价格 = 4)的时候卖出,这笔交易所能获得利润 = 4-1 = 3。
-
示例 2:
-
输入:prices = [1,2,3,4,5]
-
输出:4 解释:在第 1 天(股票价格 = 1)的时候买入,在第 5 天 (股票价格 = 5)的时候卖出, 这笔交易所能获得利润 = 5-1 = 4。注意你不能在第 1 天和第 2 天接连购买股票,之后再将它们卖出。因为这样属于同时参与了多笔交易,你必须在再次购买前出售掉之前的股票。
-
示例 3:
-
输入:prices = [7,6,4,3,1]
-
输出:0 解释:在这个情况下, 没有交易完成, 所以最大利润为0。
-
示例 4:
-
输入:prices = [1] 输出:0
提示:
-
1 <= prices.length <= 10^5
-
0 <= prices[i] <= 10^5
思路及实现
动态规划五部曲:
1.确定dp数组以及下标的含义
一天一共就有五个状态,
0.没有操作 (其实我们也可以不设置这个状态)
-
第一次持有股票
-
第一次不持有股票
-
第二次持有股票
-
第二次不持有股票
dp[i] [j]中 i表示第i天,j为 [0 - 4] 五个状态,dp[i] [j]表示第i天状态j所剩最大现金。
需要注意:dp[i] [1],表示的是第i天,买入股票的状态,并不是说一定要第i天买入股票,这是很多同学容易陷入的误区。
例如 dp[i] [1] ,并不是说 第i天一定买入股票,有可能 第 i-1天 就买入了,那么 dp[i] [1] 延续买入股票的这个状态。
2.确定递推公式
达到dp[i] [1]状态,有两个具体操作:
-
操作一:第i天买入股票了,那么dp[i] [1] = dp[i-1] [0] - prices[i]
-
操作二:第i天没有操作,而是沿用前一天买入的状态,即:dp[i] [1] = dp[i - 1] [1]
那么dp[i] [1]究竟选 dp[i-1] [0] - prices[i],还是dp[i - 1] [1]呢?
一定是选最大的,所以 dp[i] [1] = max(dp[i-1] [0] - prices[i], dp[i - 1] [1]);
同理dp[i] [2]也有两个操作:
-
操作一:第i天卖出股票了,那么dp[i] [2] = dp[i - 1] [1] + prices[i]
-
操作二:第i天没有操作,沿用前一天卖出股票的状态,即:dp[i] [2] = dp[i - 1] [2]
所以dp[i] [2] = max(dp[i - 1] [1] + prices[i], dp[i - 1] [2])
同理可推出剩下状态部分:
dp[i] [3] = max(dp[i - 1] [3], dp[i - 1] [2] - prices[i]);
dp[i] [4] = max(dp[i - 1] [4], dp[i - 1] [3] + prices[i]);
3.dp数组如何初始化
第0天没有操作,这个最容易想到,就是0,即:dp[0] [0] = 0;
第0天做第一次买入的操作,dp[0] [1] = -prices[0];
第0天做第一次卖出的操作,这个初始值应该是多少呢?
此时还没有买入,怎么就卖出呢? 其实大家可以理解当天买入,当天卖出,所以dp[0] [2] = 0;
第0天第二次买入操作,初始值应该是多少呢?应该不少同学疑惑,第一次还没买入呢,怎么初始化第二次买入呢?
第二次买入依赖于第一次卖出的状态,其实相当于第0天第一次买入了,第一次卖出了,然后再买入一次(第二次买入),那么现在手头上没有现金,只要买入,现金就做相应的减少。
所以第二次买入操作,初始化为:dp[0] [3] = -prices[0];
同理第二次卖出初始化dp[0] [4] = 0;
4.确定遍历顺序
从递归公式其实已经可以看出,一定是从前向后遍历,因为dp[i],依靠dp[i - 1]的数值。
5.举例推导dp数组
以输入[1,2,3,4,5]为例
大家可以看到红色框为最后两次卖出的状态。
现在最大的时候一定是卖出的状态,而两次卖出的状态现金最大一定是最后一次卖出。如果想不明白的录友也可以这么理解:如果第一次卖出已经是最大值了,那么我们可以在当天立刻买入再立刻卖出。所以dp4已经包含了dp4的情况。也就是说第二次卖出手里所剩的钱一定是最多的。
所以最终最大利润是dp[4] [4]
以上五部都分析完了,不难写出如下代码:
/ 版本一 class Solution {public int maxProfit(int[] prices) {int len = prices.length;// 边界判断, 题目中 length >= 1, 所以可省去if (prices.length == 0) return 0; /** 定义 5 种状态:* 0: 没有操作, 1: 第一次买入, 2: 第一次卖出, 3: 第二次买入, 4: 第二次卖出*/int[][] dp = new int[len][5];dp[0][1] = -prices[0];// 初始化第二次买入的状态是确保 最后结果是最多两次买卖的最大利润dp[0][3] = -prices[0]; for (int i = 1; i < len; i++) {dp[i][1] = Math.max(dp[i - 1][1], -prices[i]);dp[i][2] = Math.max(dp[i - 1][2], dp[i - 1][1] + prices[i]);dp[i][3] = Math.max(dp[i - 1][3], dp[i - 1][2] - prices[i]);dp[i][4] = Math.max(dp[i - 1][4], dp[i - 1][3] + prices[i]);} return dp[len - 1][4];} } // 版本二: 空间优化 class Solution {public int maxProfit(int[] prices) {int[] dp = new int[4]; // 存储两次交易的状态就行了// dp[0]代表第一次交易的买入dp[0] = -prices[0];// dp[1]代表第一次交易的卖出dp[1] = 0;// dp[2]代表第二次交易的买入dp[2] = -prices[0];// dp[3]代表第二次交易的卖出dp[3] = 0;for(int i = 1; i <= prices.length; i++){// 要么保持不变,要么没有就买,有了就卖dp[0] = Math.max(dp[0], -prices[i-1]);dp[1] = Math.max(dp[1], dp[0]+prices[i-1]);// 这已经是第二次交易了,所以得加上前一次交易卖出去的收获dp[2] = Math.max(dp[2], dp[1]-prices[i-1]);dp[3] = Math.max(dp[3], dp[2]+ prices[i-1]);}return dp[3];} }
188.买卖股票的最佳时机Ⅳ
题目链接 | 文章讲解 | 视频讲解
题目:给定一个整数数组 prices ,它的第 i 个元素 prices[i] 是一支给定的股票在第 i 天的价格。
设计一个算法来计算你所能获取的最大利润。你最多可以完成 k 笔交易。
注意:你不能同时参与多笔交易(你必须在再次购买前出售掉之前的股票)。
-
示例 1:
-
输入:k = 2, prices = [2,4,1]
-
输出:2 解释:在第 1 天 (股票价格 = 2) 的时候买入,在第 2 天 (股票价格 = 4) 的时候卖出,这笔交易所能获得利润 = 4-2 = 2。
-
示例 2:
-
输入:k = 2, prices = [3,2,6,5,0,3]
-
输出:7 解释:在第 2 天 (股票价格 = 2) 的时候买入,在第 3 天 (股票价格 = 6) 的时候卖出, 这笔交易所能获得利润 = 6-2 = 4。随后,在第 5 天 (股票价格 = 0) 的时候买入,在第 6 天 (股票价格 = 3) 的时候卖出, 这笔交易所能获得利润 = 3-0 = 3 。
提示:
-
0 <= k <= 100
-
0 <= prices.length <= 1000
-
0 <= prices[i] <= 1000
思路及实现
动规五部曲,分析如下:
1.确定dp数组以及下标的含义
在动态规划:123.买卖股票的最佳时机III 中,我是定义了一个二维dp数组,本题其实依然可以用一个二维dp数组。
使用二维数组 dp[i] [j] :第i天的状态为j,所剩下的最大现金是dp[i] [j]
j的状态表示为:
-
0 表示不操作
-
1 第一次买入
-
2 第一次卖出
-
3 第二次买入
-
4 第二次卖出
-
.....
大家应该发现规律了吧 ,除了0以外,偶数就是卖出,奇数就是买入。
题目要求是至多有K笔交易,那么j的范围就定义为 2 * k + 1 就可以了。
2.确定递推公式
还要强调一下:dp[i] [1],表示的是第i天,买入股票的状态,并不是说一定要第i天买入股票,这是很多同学容易陷入的误区。
达到dp[i] [1]状态,有两个具体操作:
-
操作一:第i天买入股票了,那么dp[i] [1] = dp[i - 1] [0] - prices[i]
-
操作二:第i天没有操作,而是沿用前一天买入的状态,即:dp[i] [1] = dp[i - 1] [1]
选最大的,所以 dp[i] [1] = max(dp[i - 1] [0] - prices[i], dp[i - 1] [1]);
同理dp[i] [2]也有两个操作:
-
操作一:第i天卖出股票了,那么dp[i] [2] = dp[i - 1] [1] + prices[i]
-
操作二:第i天没有操作,沿用前一天卖出股票的状态,即:dp[i] [2] = dp[i - 1] [2]
所以dp[i] [2] = max(dp[i - 1] [1] + prices[i], dp[i - 1] [2])
本题和动态规划:123.买卖股票的最佳时机III最大的区别就是这里要类比j为奇数是买,偶数是卖的状态。
3.dp数组如何初始化
第0天没有操作,这个最容易想到,就是0,即:dp[0] [0] = 0;
第0天做第一次买入的操作,dp[0] [1] = -prices[0];
第0天做第一次卖出的操作,这个初始值应该是多少呢?
此时还没有买入,怎么就卖出呢? 其实大家可以理解当天买入,当天卖出,所以dp[0] [2] = 0;
第0天第二次买入操作,初始值应该是多少呢?应该不少同学疑惑,第一次还没买入呢,怎么初始化第二次买入呢?
第二次买入依赖于第一次卖出的状态,其实相当于第0天第一次买入了,第一次卖出了,然后在买入一次(第二次买入),那么现在手头上没有现金,只要买入,现金就做相应的减少。
所以第二次买入操作,初始化为:dp[0] [3] = -prices[0];
第二次卖出初始化dp[0] [4] = 0;
所以同理可以推出dp[0] [j]当j为奇数的时候都初始化为 -prices[0]
在初始化的地方同样要类比j为偶数是卖、奇数是买的状态。
4.确定遍历顺序
从递归公式其实已经可以看出,一定是从前向后遍历,因为dp[i],依靠dp[i - 1]的数值。
5.举例推导dp数组
以输入[1,2,3,4,5],k=2为例。
最后一次卖出,一定是利润最大的,dp[prices.length() - 1] [2 * k]即红色部分就是最后求解。
以上分析完毕,代码如下:
class Solution {public int maxProfit(int k, int[] prices) {if (prices.length == 0) return 0;// [天数][交易次数][是否持有股票]int len = prices.length;int[][][] dp = new int[len][k + 1][2];// dp数组初始化// 初始化所有的交易次数是为确保 最后结果是最多 k 次买卖的最大利润for (int i = 0; i <= k; i++) {dp[0][i][1] = -prices[0];}for (int i = 1; i < len; i++) {for (int j = 1; j <= k; j++) {// dp方程, 0表示不持有/卖出, 1表示持有/买入dp[i][j][0] = Math.max(dp[i - 1][j][0], dp[i - 1][j][1] + prices[i]);dp[i][j][1] = Math.max(dp[i - 1][j][1], dp[i - 1][j - 1][0] - prices[i]);}}return dp[len - 1][k][0];}
}// 版本二: 二维 dp数组
class Solution {public int maxProfit(int k, int[] prices) {if (prices.length == 0) return 0;// [天数][股票状态]// 股票状态: 奇数表示第 k 次交易持有/买入, 偶数表示第 k 次交易不持有/卖出, 0 表示没有操作int len = prices.length;int[][] dp = new int[len][k*2 + 1];// dp数组的初始化, 与版本一同理for (int i = 1; i < k*2; i += 2) {dp[0][i] = -prices[0];}for (int i = 1; i < len; i++) {for (int j = 0; j < k*2 - 1; j += 2) {dp[i][j + 1] = Math.max(dp[i - 1][j + 1], dp[i - 1][j] - prices[i]);dp[i][j + 2] = Math.max(dp[i - 1][j + 2], dp[i - 1][j + 1] + prices[i]);}}return dp[len - 1][k*2];}
}//版本三:一维 dp数组 (下面有和卡哥邏輯一致的一維數組JAVA解法)
class Solution {public int maxProfit(int k, int[] prices) {if(prices.length == 0){return 0;}if(k == 0){return 0;}// 其实就是123题的扩展,123题只用记录2次交易的状态// 这里记录k次交易的状态就行了// 每次交易都有买入,卖出两个状态,所以要乘 2int[] dp = new int[2 * k];// 按123题解题格式那样,做一个初始化for(int i = 0; i < dp.length / 2; i++){dp[i * 2] = -prices[0];}for(int i = 1; i <= prices.length; i++){dp[0] = Math.max(dp[0], -prices[i - 1]);dp[1] = Math.max(dp[1], dp[0] + prices[i - 1]);// 还是与123题一样,与123题对照来看// 就很容易啦for(int j = 2; j < dp.length; j += 2){dp[j] = Math.max(dp[j], dp[j - 1] - prices[i-1]);dp[j + 1] = Math.max(dp[j + 1], dp[j] + prices[i - 1]);}}// 返回最后一次交易卖出状态的结果就行了return dp[dp.length - 1];}
}