数据标注的类型有哪些?

构建像人类一样的AI或ML模型需要大量训练数据。要使模型做出决定并采取行动,就必须通过数据标注来训练模型,使其能够理解特定信息。 但是,什么是数据标注呢?数据标注是指对用于人工智能应用的数据进行分类和标注。我们必须针对特定用例正确组织和标注训练数据。借助高质量的人工标注数据,企业可构建和改进AI实施,创建提高客户体验的产品,如产品推荐、相关搜索引擎结果、计算机视觉、语音识别、聊天机器人等。 数据的主要类型包括文本、音频、图像和视频,而许多公司也在充分利用不同类型的数据。事实上,根据《2022年AI与机器学习现状》报告,各组织表示,与前一年相比,使用的数据类型增加了25%。由于不同的行业和工作场所要求的数据类型多种多样,加大对可靠训练数据投入的重要性前所未有。 接下来,让我们详细了解一下每种标注类型。我们会列举每种数据类型的实际用例,帮助您理解数据标注的不同类型。  

 

文本标注

文本标注仍是最常用的数据标注类型。在《机器学习报告》中,有70%的受调查公司表示,他们非常依赖于文本数据。本质上,文本标注是指使用元数据标签突出关键词、短语或句子,以教会机器如何通过文字正确识别和理解人类情感。所突出的“情感”被用作训练数据,以提高机器在自然人类语言和数字文本交流方面的处理能力和参与度。 在文本标注中,准确性意味着一切。如果标注不当,则可能会导致误解,并且还会增加理解特定上下文中单词的难度。机器需要根据人类如何通过互联网交谈或互动,理解特定问题或观点的所有潜在措辞。 以聊天机器人为例。当消费者以一种机器不熟悉的方式提问时,机器可能无法理解问题,并提供解决方案。所涉及的文本标注越准确,机器就能越多地执行人类通常所需处理的耗时任务。这不仅能优化客户体验,还能帮助企业实现利润目标并更好地利用人力资源。 但是,您了解文本标注的不同形式吗?文本标注包括情绪、意图和搜索意图等各种标注类型。  

情绪标注 Sentiment Annotation

情绪分析是指评估态度、情感和意见,最终提供有价值的洞察,为重要的商业决策提供参考。因此,在初始阶段,拥有正确的数据至关重要。 要获得这些数据,通常需要依靠人类标注员,因为他们可以进行不同网络平台的情绪评估和内容审核。从评论社交媒体和电子商务网站,到标记和报告亵渎、敏感或新兴关键词,人类特别善于分析情绪数据,因为他们了解细微差别和现代趋势、俚语和其他语言的使用。如果信息表述和理解不佳,可能会影响或破坏组织的声誉。  

意图标注 Intent Annotation

随着人们越来越多地使用人机界面进行交流,机器必须能够理解自然语言和用户意图。如果机器无法识别意图,也就无法继续处理请求,并可能要求互动者重新组织语言。如果重新组织问题后,机器仍无法识别,便会将问题移交给人工来处理,而在这样的情况下,机器也就失去一开始存在的意义。 多意向数据收集和分类可将意向划分为若干关键类别,包括请求、命令、预订、推荐和确认等。这些类别可以帮助机器轻易理解查询背后的初始意图,从而更好地响应请求并找到解决方案。  

语义标注 Semantic Annotation

语义标注包括将特定文档标记为与信息最相关的语义概念。这涉及到向文件添加元数据,用概念和描述性词语来丰富内容,解释文本的深度和意义。 语义标注既可以改进产品列表,又可以确保客户能够找到想要的产品。这有助于把浏览者转化为买家。语义标注服务通过标记产品标题和搜索查询中的各个语义构成,帮助训练算法,以识别各组成部分,提高总体搜索相关性。  

命名实体标注 Named Entity Recognition

命名实体识别(NER)用于识别文本中的某些实体,以检测大型数据集中的关键信息。正式名称、地点、品牌名称和其他标识符等都是命名实体标注检测和整理的信息。 NER系统需要大量人工标注的训练数据。像澳鹏这样的企业会在广大用例中应用命名实体标注功能,例如帮助电子商务客户识别和标记一系列关键描述符,或帮助社交媒体公司标记实体,如人员、地点、公司、组织和标题,以帮助更好地定位广告内容。 多意向数据收集和分类可将文本意向划分为若干关键类别,包括请求、命令、预订、推荐和确认等。这些类别可以帮助机器理解查询背后的初始意图,从而更好地响应请求并找到解决方案。  

微软必应&澳鹏:优化搜索质量

微软的搜索引擎必应需要大规模的数据集以不断提高其搜索结果的质量,并且与不同国家地区的文化相符。我们取得的成绩超出预期,促进微软搜索在新市场上迅速增长。 除了项目交付和管理,我们还提供了高质量数据集,以促进微软必应搜索质量不断提高。随着必应团队不断探索搜索质量体验的新高度,我们也在不断开发、测试和提出解决方案,以提高必应团队的数据质量。 点击此处,阅读完整的案例研究分析。  

音频标注

如今,随着机器学习能力增强,无论在数字平台上录制的音频是什么格式,基本都能够被识别。因此,音频标注、语音数据转录和时间戳标注对企业来说成为可能。音频标注还包括特定语音和语调的转录,以及语言、方言和说话者人口特征的识别。 音频标注的使用场景不尽相同,有些用例需要非常特定的方法。例如:在安全和热线技术应用中,标记攻击性语音指示符和玻璃破碎等非语音声音,在紧急情况下非常有用。为对话或事件中的噪音和声音提供更多的语境信息,可以使人们更容易地充分理解情况。  

Dialpad&澳鹏:音频转录和分类优化

Dialpad致力于改善与数据的对话。他们收集电话音频,用内部语音识别模型转录这些对话,并使用自然语言处理算法理解各对话。为了让每一个销售电话都能成功,他们利用这种一对一的对话来确定每个销售代表(以及整个公司)做得好和做得不好的地方。 在与澳鹏的竞争对手合作6个月之后,Dialpad发现,模型难以达到成功所需的精度阈值。和澳鹏合作仅仅数周后,Dialpad便成功创建模型所需的转录和NLP训练数据。现在,Dialpad的转录模型利用澳鹏平台进行音频转录和分类,以及内部转录验证和模型的输出。  

图像标注

在数字化时代,图像标注可以被视为计算机最重要的功能之一,因为这可以通过视觉镜头或新的、具启发性的视角来解释世界。图像标注在广泛的应用中至关重要,包括计算机视觉、机器人视觉、面部识别以及依赖机器学习来解释图像的解决方案。要训练这些解决方案,必须以标识符、标题或关键字的形式为图像分配元数据。 从自动驾驶车辆使用的计算机视觉系统和挑选和排序产品的机器,到自动识别医疗状况的医疗应用程序,有许多用例需要大量带标注的图像。通过有效地训练这些系统,图像标注可以提高精度和准确性。  

Adobe Stock&澳鹏:大批量图像打标

Adobe Stock是Adobe的一个旗舰产品,它是精选的高质量图像集合。图库本身规模惊人:拥有超过2亿条数据(包括1,500万个视频、3,500万个矢量、1,200万条可编辑数据,以及1.4亿张照片、插图、模板和3D数据)。 虽然听起来是一下不可能完成的任务,但是让这两亿个文件都能够被正确地搜索到,是非常重要的。面对此困境,Adobe需要一个快速有效的解决方案。 澳鹏提供极为精确的训练数据创建一个模型,该模型可以在库存超过1亿张、每天上传数十万张新图片的图库中分辨这些微妙的属性。这些训练数据帮助Adobe为其庞大的客户群提供最有价值的图像。用户无需滚动浏览类似图片的页面,即可快速找到最有用的图片,从而腾出时间创建有力的营销材料。通过人机协同的机器学习实践,Abode受益于客户可以依赖的更有效、更强大和更有用的模型。点击阅读Adobe Stock的图像打标案例分析。  

视频标注

人工标注数据是机器学习成功的关键。在管理主观性、理解意图和处理歧义方面,人类比计算机要强得多。例如,决定搜索引擎结果是否相关时,需要许多人的输入才能达成共识。在训练计算机视觉或模式识别解决方案时,需要人工识别和标注特定数据,例如圈出图像中包含树木或交通标志的所有像素。使用这些结构化数据,机器可以学会在测试和生产中识别这些关系。

HERE Technologies&澳鹏:通过视频标注精细化地图

HERE的目标是创建精确到几厘米的三维地图,自上世纪80年代中期以来,HERE一直是这一领域的创新者。HERE一直致力于为数百家企业和组织提供详细、精确和可操作的位置数据和见解,而这一驱动因素从未想要更改。 HERE目标宏伟,即为数万公里的行车公路标注地面实况数据,为其信号检测模型提供支持。然而,通过将视频解析为图像来实现这个目标根本是天方夜谭。标注单个视频帧不仅非常耗时,而且乏味昂贵。因此,找到可以微调符号检测算法性能的方法成了重中之重。澳鹏也开始为HERE提供解决方案。 我们的机器学习辅助视频对象跟踪解决方案为实现这一雄心壮志提供了绝佳机会。这是因为我们将人工智能与机器学习相结合,大大提高了视频标注的速度。 在应用该解决方案数月后,HERE相信,该解决方案有利于提高模型训练数据的收集速度。和以往任何时候相比,HERE能创建更多的标志视频,为研究人员和开发人员提供必要的信息,以便他们更好地微调地图。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/2177.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

Qt6 Qt Quick UI原型学习QML第二篇

Qt6 Qt Quick UI原型学习QML第二篇 界面效果QML语法语法讲解核心要素项目元素矩形元素文本元素图像元素MouseArea元素 界面效果 QML语法 import QtQuick 2.12 import QtQuick.Window 2.12Window {id: rootvisible: truewidth: 640height: 480title: qsTr("QML学习第二篇&…

用微服务架构推进企业数字化转型升级

随着数字化转型进入深水区,企业应用程序建设需求急剧增长且变化多端,软件架构经历了单体结构、垂直架构、SOA架构,发展到了现在的微服务架构。 单体架构目前应用较多,部署容易,但单体式应用内部包含了所有需要的服务&…

FPGA——点亮led灯

文章目录 一、实验环境二、实验任务三、实验过程3.1 编写verliog程序3.2 引脚配置 四、仿真4.1 仿真代码4.2仿真结果 五、实验结果六、总结 一、实验环境 quartus18.1 vscode Cyclone IV开发板 二、实验任务 每间隔1S实现led灯的亮灭,实现流水灯的效果。 三、实…

基于卡尔曼滤波进行四旋翼动力学建模(SimulinkMatlab)

💥💥💞💞欢迎来到本博客❤️❤️💥💥 🏆博主优势:🌞🌞🌞博客内容尽量做到思维缜密,逻辑清晰,为了方便读者。 ⛳️座右铭&a…

2.Docker镜像和容器操作

文章目录 Docker操作Docker镜像操作搜索镜像获取镜像镜像加速下载查看镜像详细信息为镜像添加标签删除镜像导出导入镜像上传镜像 Docker容器操作创建容器查看容器状态启动容器创建并启动容器进入容器停止容器删除容器复制容器文件到宿主机容器的导出导入 Docker操作 ###查看do…

vscode 端口转发实现端口映射,实现端口自由

用vscode连接server进行开发, 是非常方便的,但很多时候,server的端口开放的很有限,那么就可以利用vscode进行端口映射 举一个应用场景: 先通过A利用vscode 连接B,然后再vscode 的port窗口进行端口转发&…

SpringBoot中整合Sharding Sphere实现数据加解密/数据脱敏/数据库密文,查询明文

场景 为防止数据泄露,需要在插入等操作时将某表的字段在数据库中加密存储,在需要查询使用时明文显示。 Sharding Sphere ShardingSphere是一套开源的分布式数据库中间件解决方案组成的生态圈, 它由Sharding-JDBC、Sharding-Proxy和Shardi…

如何获取microstore商品详情接口php接口jason数据字段

随着科技的发展,API接口成为了各行业发展的最新趋势。在微店购物平台中,商品详情API接口的引入,为商家和消费者提供了更加便捷、高效的用户体验。本文将为大家详细介绍微店商品详情API接口的优势和使用方法 商品详情API接口的优势 1.提升用户…

【milvus】向量数据库,用来做以图搜图+人脸识别的特征向量

1. 安装milvus ref:https://milvus.io/docs 第一次装东西,要把遇到的问题和成功经验都记录下来。 1.Download the YAML file wget https://github.com/milvus-io/milvus/releases/download/v2.2.11/milvus-standalone-docker-compose.yml -O docker-compose.yml看…

JavaWeb项目【SpringBoot】——图书项目4.0【源码】:SpringBoot版本 springboot相关技术 项目应用

目录 项目简介思考 & 改进1.Jsp都是同步请求---->改成异步Ajax【完成】2.前端用Jsp技术落后----->用Vue框架【完成】3.架构问题:配置数据和Java代码耦合【完成】3.SQL语句和Java代码耦合【完成】4.架构问题:servlet只能处理一个请求5.响应方式…

Web前端工程师笔试题(合集)

Web前端开发工程师笔试题篇1 1. 在一个框架的属性面板中,不能设置下面哪一项。( C ) A.源文件 ; B.边框颜色 ; C.边框宽度 D.滚动条 2. CSS样式表根据所在网页的位置,可分为?(B ) A.行内样式表、内嵌样式表、混合样式表 B.行内样式表、内嵌样式表…

客户案例 | 数字化加速,金融企业实现3D打印式应用程序开发

关键发现: 客户痛点:传统开发周期长,流程复杂,难以满足杭银消金在企业快速发展过程中的应用开发需求;内部业务因为优先级不高,导致开发资源分配有限,更加迟滞了管理部门数字化转型的进度。 解决…

pytorch实现线性回归

转大佬笔记 代码: # -*- coding: utf-8 -*- # Time : 2023-07-14 14:57 # Author : yuer # FileName: exercise05.py # Software: PyCharm import matplotlib.pyplot as plt import torch# x,y是3行1列的矩阵,所以在[]中要分为3个[] x_data torch.…

03 QT对象树

Tips: QT通过对象树机制,能够自动、有效的组织和管理继承自QObject的Qt对象,不需要用户手动回收资源,系统自动调用析构函数。 验证对象树功能: 新建C文件 继承自QPushButton,但没有QPushButton,但有其父类…

谷歌Bard更新:支持中文提问和语音朗读

ChatGPT不断更新功能,从GPT-3到3.5,再到GPT-4,甚至最新的plus版已经支持图像处理和图表生成,而谷歌Bard却自从推出后就一直很安静,没有什么大动作。眼见被ChatGPT、Claude甚至是文心一言抢去了风头,自然心有…

050、事务设计之Percolator事务模型

Percolator 背景 Bigtable: 大表打散每行到各个节点,每一行作为一个kv。解决的问题 一个事务涉及的行在多个节点,如何用单行对一个事务进行控制,实现原子性。 快照隔离级别(snapshot ) 白色点:代表事务开始…

Bring Your Data!Self- supervised Evolution of Large Language Models

Bring Your Data!Self- supervised Evolution of Large Language Models IntroductionMethod参考 Introduction 这篇论文提出了一种自监督的评估方式来衡量大型语言模型的能力和局限性。常规的基于数据集的评估方式存在一些缺点: 需要不断新建数据集。存在数据集和…

不用显示器,不用鼠标和键盘,让我们用主机远程访问OK3588的桌面

不用显示器,不用鼠标和键盘,让我们用主机远程访问OK3588的桌面 MobaXterm软件介绍串口终端运行命令MobaXterm访问开发板 MobaXterm软件介绍 MobaXterm是一款增强型终端软件,对于Windows平台上的程序员、网络管理员和开发者是一款极其优秀的工…

TCP缓冲区和4次挥手调优

目录 如何修改TCP缓冲区才能兼顾并发数量与传输速度? 四次挥手性能调优 1,为什么建立连接是三次握手,而关闭连接需要四次挥手呢? 2.四次挥手的流程,注意5个状态 3.主动方优化 4,被动方调优 最后 如何修改TCP缓冲区才能兼顾并发数量与传输速度&…

【深度学习】目标检测的全面回顾

一、说明 随着自动驾驶汽车、智能视频监控、面部检测和各种人数统计应用的兴起,对快速准确的物体检测系统的需求也在不断增长。这些系统不仅涉及识别和分类图像中的每个对象,还涉及通过在图像周围绘制适当的边界框来定位每个对象。这使得对象检测比其传统…