[足式机器人]Part4 南科大高等机器人控制课 Ch05 Instantaneous Velocity of Moving Frames

本文仅供学习使用
本文参考:
B站:CLEAR_LAB
笔者带更新-运动学
课程主讲教师:
Prof. Wei Zhang

南科大高等机器人控制课 Ch05 Instantaneous Velocity of Moving Frames

  • 1.Instantanenous Velocity of Rotating Frames
  • 2.Instantanenous Velocity of Moving Frames
  • 3.Review/Summary of Rigid Body Velocity & Operation


Given Frame trajectory [ T ] ( t ) = ( [ Q ] ( t ) , R ⃗ p ( t ) ) \left[ T \right] \left( t \right) =\left( \left[ Q \right] \left( t \right) ,\vec{R}_p\left( t \right) \right) [T](t)=([Q](t),R p(t)) wrt { O } \left\{ O \right\} {O}
在这里插入图片描述
Question : What is the velocity (twist/spatial velocity) of frame at time t t t
[ T ] ( t ) ∈ R 4 × 4 \left[ T \right] \left( t \right) \in \mathbb{R} ^{4\times 4} [T](t)R4×4 : 4 × 4 4\times 4 4×4 matrix S E ( 3 ) SE\left( 3 \right) SE(3)
log ⁡ ( [ T ] ( t ) ) → S θ \log \left( \left[ T \right] \left( t \right) \right) \rightarrow \mathcal{S} \theta log([T](t))Sθ : is S \mathcal{S} S (unit) the velocity of [ T ] ( t ) \left[ T \right] \left( t \right) [T](t)? —— no

R ⃗ p ( t ) \vec{R}_p\left( t \right) R p(t) : position vector ; R ⃗ ˙ p ( t ) \dot{\vec{R}}_p\left( t \right) R ˙p(t) velocity vector;
S θ ↔ [ T ] ( t ) \mathcal{S} \theta \leftrightarrow \left[ T \right] \left( t \right) Sθ[T](t) : position coordination (what velocity?—— [ T ˙ ] ( t ) \left[ \dot{T} \right] \left( t \right) [T˙](t)?)
[ T ˙ ] ( t ) ∈ R 4 × 4 ∉ S E ( 3 ) \left[ \dot{T} \right] \left( t \right) \in \mathbb{R} ^{4\times 4}\notin SE\left( 3 \right) [T˙](t)R4×4/SE(3)

1.Instantanenous Velocity of Rotating Frames

{ A } \left\{ A \right\} {A} frame is rotating with orientation [ Q A ] ( t ) \left[ Q_A \right] \left( t \right) [QA](t) and velocity ω ⃗ A ( t ) \vec{\omega}_A\left( t \right) ω A(t) at time t t t (Note: everything is wrt { O } \left\{ O \right\} {O} frame)

Let ω ^ θ = log ⁡ ( [ Q A ] ( t ) ) \hat{\omega}\theta =\log \left( \left[ Q_A \right] \left( t \right) \right) ω^θ=log([QA](t)) can be obtained from the reference frame (say { O } \left\{ O \right\} {O} frame) by rotating about ω ^ \hat{\omega} ω^ by θ \theta θ degree

  • ω ^ θ \hat{\omega}\theta ω^θ only describes the current orientation of { A } \left\{ A \right\} {A} relative to { O } \left\{ O \right\} {O} , it does not contain info about how the frame is rotating at time t t t

What is the relation between ω ⃗ A ( t ) \vec{\omega}_A\left( t \right) ω A(t) and [ Q A ] ( t ) \left[ Q_A \right] \left( t \right) [QA](t)
d d t [ Q A ] ( t ) = ω ⃗ ~ A ( t ) [ Q A ] ( t ) ⇒ ω ⃗ ~ A ( t ) = [ Q ˙ A ] ( t ) [ Q A ] − 1 ( t ) 1 \frac{\mathrm{d}}{\mathrm{d}t}\left[ Q_A \right] \left( t \right) =\tilde{\vec{\omega}}_A\left( t \right) \left[ Q_A \right] \left( t \right) \Rightarrow \tilde{\vec{\omega}}_A\left( t \right) =\left[ \dot{Q}_A \right] \left( t \right) \left[ Q_A \right] ^{-1}\left( t \right) 1 dtd[QA](t)=ω ~A(t)[QA](t)ω ~A(t)=[Q˙A](t)[QA]1(t)1

What is ω ⃗ A A \vec{\omega}_{\mathrm{A}}^{A} ω AA?
ω ⃗ A A = [ Q O A ] ω ⃗ A O \vec{\omega}_{\mathrm{A}}^{A}=\left[ Q_{\mathrm{O}}^{A} \right] \vec{\omega}_{\mathrm{A}}^{O} ω AA=[QOA]ω AO
velocity of A A A relative to { O } \left\{ O \right\} {O} , expressed in { A } \left\{ A \right\} {A}
ω ⃗ ~ A A = [ Q O A ] ω ⃗ A O ~ = [ Q O A ] ω ⃗ ~ A O [ Q O A ] T = [ Q O A ] [ Q ˙ A O ] [ Q A O ] − 1 [ Q O A ] T = [ Q O A ] [ Q ˙ A O ] = [ Q A O ] − 1 [ Q ˙ A O ] \tilde{\vec{\omega}}_{\mathrm{A}}^{A}=\widetilde{\left[ Q_{\mathrm{O}}^{A} \right] \vec{\omega}_{\mathrm{A}}^{O}}=\left[ Q_{\mathrm{O}}^{A} \right] \tilde{\vec{\omega}}_{\mathrm{A}}^{O}\left[ Q_{\mathrm{O}}^{A} \right] ^{\mathrm{T}}=\left[ Q_{\mathrm{O}}^{A} \right] \left[ \dot{Q}_{\mathrm{A}}^{O} \right] \left[ Q_{\mathrm{A}}^{O} \right] ^{-1}\left[ Q_{\mathrm{O}}^{A} \right] ^{\mathrm{T}}=\left[ Q_{\mathrm{O}}^{A} \right] \left[ \dot{Q}_{\mathrm{A}}^{O} \right] =\left[ Q_{\mathrm{A}}^{O} \right] ^{-1}\left[ \dot{Q}_{\mathrm{A}}^{O} \right] ω ~AA=[QOA]ω AO =[QOA]ω ~AO[QOA]T=[QOA][Q˙AO][QAO]1[QOA]T=[QOA][Q˙AO]=[QAO]1[Q˙AO]

2.Instantanenous Velocity of Moving Frames

{ A } \left\{ A \right\} {A} moving frame with configuration [ T A ] ( t ) \left[ T_A \right] \left( t \right) [TA](t) at t ime t t t undergoes a rigid body motion with velocity V A ( t ) = ( ω ⃗ , v ⃗ ) \mathcal{V} _A\left( t \right) =\left( \vec{\omega},\vec{v} \right) VA(t)=(ω ,v ) (Note: everything is wrt { O } \left\{ O \right\} {O} frame)

The exponential coordinate S ^ ( t ) θ ( t ) = log ⁡ ( [ T A ] ( t ) ) \hat{\mathcal{S}}\left( t \right) \theta \left( t \right) =\log \left( \left[ T_A \right] \left( t \right) \right) S^(t)θ(t)=log([TA](t)) only indicates the current configuration of { A } \left\{ A \right\} {A} , and does not tell us about how the frame is moving at time t t t

What is the relation between V A ( t ) \mathcal{V} _A\left( t \right) VA(t) and [ T A ] ( t ) \left[ T_A \right] \left( t \right) [TA](t) ?
d d t [ T A ] ( t ) = [ V A ] ( t ) [ T A ] ( t ) ⇒ [ V A ] ( t ) = [ T ˙ A ] ( t ) [ T A ] − 1 ( t ) \frac{\mathrm{d}}{\mathrm{d}t}\left[ T_A \right] \left( t \right) =\left[ \mathcal{V} _A \right] \left( t \right) \left[ T_A \right] \left( t \right) \Rightarrow \left[ \mathcal{V} _A \right] \left( t \right) =\left[ \dot{T}_A \right] \left( t \right) \left[ T_A \right] ^{-1}\left( t \right) dtd[TA](t)=[VA](t)[TA](t)[VA](t)=[T˙A](t)[TA]1(t)

3.Review/Summary of Rigid Body Velocity & Operation

  • spatial velocity / twist V = [ ω ⃗ v ⃗ O ] \mathcal{V} =\left[ \begin{array}{c} \vec{\omega}\\ \vec{v}_{\mathrm{O}}\\ \end{array} \right] V=[ω v O] , v ⃗ O \vec{v}_{\mathrm{O}} v O reference point O O O may/may not move with the body
    ω ⃗ \vec{\omega} ω : angular velocity
    v ⃗ O \vec{v}_{\mathrm{O}} v O : velocity of the body-fixed partical currently coincides with O O O
    Given V = [ ω ⃗ v ⃗ O ] \mathcal{V} =\left[ \begin{array}{c} \vec{\omega}\\ \vec{v}_{\mathrm{O}}\\ \end{array} \right] V=[ω v O] , any body fixed point P P P , its velocity is v ⃗ P = v ⃗ O + ω ⃗ × R ⃗ O P \vec{v}_{\mathrm{P}}=\vec{v}_{\mathrm{O}}+\vec{\omega}\times \vec{R}_{\mathrm{OP}} v P=v O+ω ×R OP

  • Twist in frames : Given frame { B } \left\{ B \right\} {B} , { O } \left\{ O \right\} {O} with relation
    V O = [ ω ⃗ O v ⃗ O O ] , V B = [ ω ⃗ B v ⃗ O B ] \mathcal{V} ^O=\left[ \begin{array}{c} \vec{\omega}^O\\ \vec{v}_{\mathrm{O}}^{O}\\ \end{array} \right] ,\mathcal{V} ^B=\left[ \begin{array}{c} \vec{\omega}^B\\ \vec{v}_{\mathrm{O}}^{B}\\ \end{array} \right] VO=[ω Ov OO],VB=[ω Bv OB] —— V \mathcal{V} V is a twist of some rigid body
    V O = [ X B O ] V B \mathcal{V} ^O=\left[ X_{\mathrm{B}}^{O} \right] \mathcal{V} ^B VO=[XBO]VB —— change of coordinate for twist [ X B O ] ∈ R 6 × 6 \left[ X_{\mathrm{B}}^{O} \right] \in \mathbb{R} ^{6\times 6} [XBO]R6×6
    [ X B O ] ∈ R 6 × 6 [ X B O ] = [ [ Q B O ] 0 R ⃗ ~ B O [ Q B O ] [ Q B O ] ] \left[ X_{\mathrm{B}}^{O} \right] \in \mathbb{R} ^{6\times 6}\left[ X_{\mathrm{B}}^{O} \right] =\left[ \begin{matrix} \left[ Q_{\mathrm{B}}^{O} \right]& 0\\ \tilde{\vec{R}}_{\mathrm{B}}^{O}\left[ Q_{\mathrm{B}}^{O} \right]& \left[ Q_{\mathrm{B}}^{O} \right]\\ \end{matrix} \right] [XBO]R6×6[XBO]=[[QBO]R ~BO[QBO]0[QBO]]
    For given [ T ] = ( [ Q ] , R ⃗ ) ⇒ [ X ] = [ A d T ] = [ [ Q ] 0 R ⃗ ~ [ Q ] [ Q ] ] \left[ T \right] =\left( \left[ Q \right] ,\vec{R} \right) \Rightarrow \left[ X \right] =\left[ Ad_T \right] =\left[ \begin{matrix} \left[ Q \right]& 0\\ \tilde{\vec{R}}\left[ Q \right]& \left[ Q \right]\\ \end{matrix} \right] [T]=([Q],R )[X]=[AdT]=[[Q]R ~[Q]0[Q]]

  • screw axis : S = ( s ^ , R ⃗ q , h ) ↔ [ ω ⃗ v ⃗ ] = [ s ^ h s ^ − s ^ × R ⃗ q ] \mathcal{S} =\left( \hat{s},\vec{R}_{\mathrm{q}},h \right) \leftrightarrow \left[ \begin{array}{c} \vec{\omega}\\ \vec{v}\\ \end{array} \right] =\left[ \begin{array}{c} \hat{s}\\ h\hat{s}-\hat{s}\times \vec{R}_{\mathrm{q}}\\ \end{array} \right] S=(s^,R q,h)[ω v ]=[s^hs^s^×R q]
    Al rigid body motion can be "thought of " screw motion rotation & linear motion along the axis
    we typically write V = S θ ˙ \mathcal{V} =\mathcal{S} \dot{\theta} V=Sθ˙ ( S \mathcal{S} S - ‘unit’ normalized twist)

  • rotation operation / Exp coordinate (wrt { O } \left\{ O \right\} {O})
    OED for rotation : R ⃗ ˙ p = ω ⃗ × R ⃗ p = ω ⃗ ~ R ⃗ p ⇒ R ⃗ p ( t ) = e ω ⃗ ~ t R ⃗ p ( 0 ) , s o ( 3 ) = { ω ⃗ ~ : ω ⃗ ∈ R 3 } \dot{\vec{R}}_{\mathrm{p}}=\vec{\omega}\times \vec{R}_{\mathrm{p}}=\tilde{\vec{\omega}}\vec{R}_{\mathrm{p}}\Rightarrow \vec{R}_{\mathrm{p}}\left( t \right) =e^{\tilde{\vec{\omega}}t}\vec{R}_{\mathrm{p}}\left( 0 \right) ,so\left( 3 \right) =\left\{ \tilde{\vec{\omega}}:\vec{\omega}\in \mathbb{R} ^3 \right\} R ˙p=ω ×R p=ω ~R pR p(t)=eω ~tR p(0),so(3)={ω ~:ω R3}
    if ω ⃗ = ω ^ \vec{\omega}=\hat{\omega} ω =ω^ , unit vector , t = θ t=\theta t=θ, ω ^ θ ↔ [ Q ] = e ω ⃗ ~ θ ∈ S O ( 3 ) \hat{\omega}\theta \leftrightarrow \left[ Q \right] =e^{\tilde{\vec{\omega}}\theta}\in SO\left( 3 \right) ω^θ[Q]=eω ~θSO(3), ω ^ θ \hat{\omega}\theta ω^θ os calld exponention cooedinate of [ Q ] \left[ Q \right] [Q] denoted log ⁡ ( [ Q ] ) \log \left( \left[ Q \right] \right) log([Q])
    R ⃗ p ′ = e ω ⃗ ~ θ R ⃗ p \vec{R}_{\mathrm{p}^{\prime}}=e^{\tilde{\vec{\omega}}\theta}\vec{R}_{\mathrm{p}} R p=eω ~θR p
    Given a frame { A } \left\{ A \right\} {A}, [ Q A ] = [ x ^ A , y ^ A , z ^ A ] \left[ Q_A \right] =\left[ \hat{x}_A,\hat{y}_A,\hat{z}_A \right] [QA]=[x^A,y^A,z^A] then
    [ Q ] [ Q A ] = e ω ⃗ ~ θ [ Q A ] \left[ Q \right] \left[ Q_A \right] =e^{\tilde{\vec{\omega}}\theta}\left[ Q_A \right] [Q][QA]=eω ~θ[QA] : [ Q ] \left[ Q \right] [Q] action operation , means rotate [ Q A ] \left[ Q_A \right] [QA] about ω ^ \hat{\omega} ω^ by θ \theta θ degree
    Experssion of rotation operator [ Q ] \left[ Q \right] [Q] in { O } \left\{ O \right\} {O} and { B } \left\{ B \right\} {B} : [ Q ] \left[ Q \right] [Q] in { O } \left\{ O \right\} {O} ; [ Q B O ] − 1 [ Q ] [ Q B O ] \left[ Q_{\mathrm{B}}^{O} \right] ^{-1}\left[ Q \right] \left[ Q_{\mathrm{B}}^{O} \right] [QBO]1[Q][QBO] same rotation operator in { B } \left\{ B \right\} {B}

  • Rigid body transformation and exp coordinate(wrt { O } \left\{ O \right\} {O})
    ODE : R ⃗ ˙ p = v ⃗ + ω ⃗ × R ⃗ p ⇒ [ R ⃗ ˙ p 0 ] = [ ω ⃗ ~ v ⃗ 0 0 ] ∣ 4 × 4 [ R ⃗ p 1 ] ⇒ [ R ⃗ ˙ p 0 ] = e [ V ] t [ R ⃗ p 1 ] \dot{\vec{R}}_{\mathrm{p}}=\vec{v}+\vec{\omega}\times \vec{R}_{\mathrm{p}}\Rightarrow \left[ \begin{array}{c} \dot{\vec{R}}_{\mathrm{p}}\\ 0\\ \end{array} \right] =\left. \left[ \begin{matrix} \tilde{\vec{\omega}}& \vec{v}\\ 0& 0\\ \end{matrix} \right] \right|_{4\times 4}\left[ \begin{array}{c} \vec{R}_{\mathrm{p}}\\ 1\\ \end{array} \right] \Rightarrow \left[ \begin{array}{c} \dot{\vec{R}}_{\mathrm{p}}\\ 0\\ \end{array} \right] =e^{\left[ \mathcal{V} \right] t}\left[ \begin{array}{c} \vec{R}_{\mathrm{p}}\\ 1\\ \end{array} \right] R ˙p=v +ω ×R p[R ˙p0]=[ω ~0v 0] 4×4[R p1][R ˙p0]=e[V]t[R p1] e [ V ] t e^{\left[ \mathcal{V} \right] t} e[V]t - matrix representation of V \mathcal{V} V, s e ( 3 ) = { [ V ] , V ∈ R 6 } se\left( 3 \right) =\left\{ \left[ \mathcal{V} \right] ,\mathcal{V} \in \mathbb{R} ^6 \right\} se(3)={[V],VR6}
    在这里插入图片描述
    S ^ θ \hat{\mathcal{S}}\theta S^θ is the exp coordinate of [ T ] \left[ T \right] [T]
    [ R ⃗ p ′ 1 ] = [ T ] [ R ⃗ p 1 ] \left[ \begin{array}{c} \vec{R}_{\mathrm{p}^{\prime}}\\ 1\\ \end{array} \right] =\left[ T \right] \left[ \begin{array}{c} \vec{R}_{\mathrm{p}}\\ 1\\ \end{array} \right] [R p1]=[T][R p1]
    [ T ] [ T A ] \left[ T \right] \left[ T_A \right] [T][TA] : rotate frame { A } \left\{ A \right\} {A} about screw axis S ^ \hat{\mathcal{S}} S^ by θ \theta θ degree

  • rigid operation of screw axis

  • S ′ = [ A d T ] S \mathcal{S} ^{\prime}=\left[ Ad_T \right] \mathcal{S} S=[AdT]S means rotate about axis S \mathcal{S} S along S ^ \hat{\mathcal{S}} S^ by θ \theta θ degree

  • expression of [ T ] \left[ T \right] [T] in { B } \left\{ B \right\} {B}: [ T B ] − 1 [ T ] [ T B ] \left[ T_{\mathrm{B}} \right] ^{-1}\left[ T \right] \left[ T_{\mathrm{B}} \right] [TB]1[T][TB]

  • velocity of moving frame [ T ] ( t ) \left[ T \right] \left( t \right) [T](t) : [ V ] = [ T ˙ ] [ T ] − 1 \left[ \mathcal{V} \right] =\left[ \dot{T} \right] \left[ T \right] ^{-1} [V]=[T˙][T]1

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/212646.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

最新Redis7持久化(权威出版)

首先我们要知道什么是持久化:持久化是指将数据保存到磁盘上,以确保在Redis服务器重启时数据不会丢失。 Redis支持两种主要的持久化方式:RDB持久化和AOF持久化 下面让我依次给你介绍一下: RDB持久化 作用 这是将Redis数据保存…

Java语言概述及保姆级入门教程(JDK 17版本)

笔记来自尚硅谷老师-康老师 学习教程:https://www.bilibili.com/video/BV1PY411e7J6/?spm_id_from333.337.search-card.all.click 1、Java基础全程脉络图 1.1 本章专题与脉络 2. 抽丝剥茧话Java 2.1 当前大学生就业形势 麦可思研究院发布了《2022年中国大学生就业…

C#图像处理OpenCV开发指南(CVStar,09)——边缘识别之Scharr算法的实例代码

1 边缘识别之Scharr算法 算法文章很多,不再论述。 1.1 函数原型 void Cv2.Scharr(src,dst,ddepth,dx,dy,scale,delta,borderType) 1.2 参数说明 src 代表原始图像。dst 代表目标图像。ddepth 代表输出图像的深度。CV_16Sdx 代表x方向上的求导阶数…

uniApp应用软件在运行时,不符合华为应用市场审核标准。解决方案合集!

(暂时用不到的也建议收藏一下,因为文章持续更新中) 最新更改时间:20023-12-10 第一次做App应用开发相信大家一定都遇到过华为应用市场审核的“驳回”! 有些问题一看就明白可以立马修改,而有一些问题修改意…

Dubbo入门直接上手,结合微服务详解

Dubbo 高性能、轻量级的 Java RPC 框架 RPC: Remote Procedure Call 远程过程调用,简单来说就是它允许一个计算机程序通过网络请求调用另一个计算机上的程序,就像本地调用一样。有非常多的协议和技术来都实现了RPC的过程,比如&a…

Elasticsearch 8.9 refresh刷Es缓冲区的数据到Lucene,更新segemnt,使数据可见

一、相关API的handler1、接受HTTP请求的hander(RestRefreshAction)2、往数据节点发送刷新请求的action(TransportRefreshAction)3、数据节点接收主节点refresh传输的action(TransportShardRefreshAction) 二、在IndexShard执行refresh操作1、根据入参决定是使用lucene提供的阻塞…

【设计模式--创建型--原型模式】

设计模式--创建型--原型模式 原型模式概述结构实现结果 案例代码结果使用场景 扩展(深\浅克隆)浅克隆演示:结果:使用深克隆(利用对象流)结果 原型模式 概述 用一个已经创建的实例作为原型,通过…

Spring Cloud Gateway + Nacos + LoadBalancer实现企业级网关

1. Spring Cloud Gateway 整合Nacos、LoadBalancer 实现企业级网关 前置工作: 创建 SpringBoot 多模块项目创建网关(gateway-service)、用户(user-service)模块用户模块添加 Nacos discovery 支持以及 Spring Web&am…

gitbash下载安装

参考教程 零、下载 官网地址 2.43.0win64 链接:https://pan.baidu.com/s/16urs_nmky7j20-qNzUTTkg 提取码:7jaq 一、安装 图标组件(Additional icons):选择是否创建桌面快捷方式;桌面浏览(Win…

逸迅科技丁红阳:三种能力帮助企业打造GBI “护城河”

大数据产业创新服务媒体 ——聚焦数据 改变商业 近日,由上海市经济和信息化委员会、上海市科学技术委员会指导,数据猿与上海大数据联盟联合主办的“2023企业数智化转型升级发展论坛”在上海举行。本次论坛以“释放数字价值驱动智能升级”为主题&#xf…

piakachu越权漏洞

水平越权 首先打开这一关,在右侧有一些提示,我们可以看到 然后我们随便输入一组信息即可,可以在url中看到这样的字段 当我们尝试在url中直接更换另一个用户名时可以发现,直接切换到了另一个用户的身份 垂直越权 这里可以看到右边…

一文学会使用 PyInstaller 将 Python 脚本打包为 .exe 可执行文件

文章目录 前言PyInstaller特点跨平台支持自动依赖项处理单文件发布支持图形用户界面(GUI)和命令行界面(CLI)应用支持多种打包选项 基本用法常用参数其它参数 版本 & 环境实现步骤安装 PyInstaller创建 Python 脚本使用 PyInst…

【SpringBoot教程】SpringBoot 创建定时任务(配合数据库动态执行)

作者简介:大家好,我是撸代码的羊驼,前阿里巴巴架构师,现某互联网公司CTO 联系v:sulny_ann(17362204968),加我进群,大家一起学习,一起进步,一起对抗…

transformer模型结构|李宏毅机器学习21年

来源:https://www.bilibili.com/video/BV1Bb4y1L7FT?p4&vd_sourcef66cebc7ed6819c67fca9b4fa3785d39 文章目录 概述seq2seqtransformerEncoderDecoderAutoregressive(AT)self-attention与masked-self attentionmodel如何决定输出的长度…

【亲测有效】支持横竖屏 微信小程序video禁止进度条拖动,微信小程序遮罩进度条,

背景&#xff1a;部分课程禁止客户拖动视频进度条直至播放结束 红色是遮罩区域遮罩区域 实际遮罩效果&#xff08;有一个很浅的阴影区域&#xff09; 实现代码 .wxml文件 <video enable-progress-gesture"false" ><cover-view class"cover">…

基于深度学习的yolov7植物病虫害识别及防治系统

欢迎大家点赞、收藏、关注、评论啦 &#xff0c;由于篇幅有限&#xff0c;只展示了部分核心代码。 文章目录 一项目简介简介YOLOv7 系统特性工作流程 二、功能三、系统四. 总结 一项目简介 # YOLOv7植物病虫害识别及防治系统介绍 简介 该系统基于深度学习技术&#xff0c;采…

Seata配置

参考教程 seata 分布式事务的环境搭建与使用 Seata 1.4.0 nacos配置和使用&#xff0c;超详细 Seata 1.4.2 的安装 Nacos的配置和使用 官网下载地址 本文以v1.4.1为例 1.数据库及表的创建 创建seata数据库&#xff0c;创建以下表&#xff08;右键连接-》新建数据库seata-》…

windows系统proteus中Ardunio Mega 2560和虚拟机上Ubuntu系统CuteCom进行串口通信

在文章利用proteus实现串口助手和arduino Mega 2560的串口通信-CSDN博客 中&#xff0c;实现了windows系统的proteus中Ardunio Mega 2560和SSCOM通过虚拟串口进行通信。虚拟串口的连接示意图如下图所示。 在文章windows系统和虚拟机上ubuntu系统通过虚拟串口进行通信-CSDN博客…

3DMAX关于显示驱动问题的解决方法大全

3DMAX与显卡驱动有关的问题主要有以下几种情况&#xff1a; 1.3DMAX启动弹出这样的界面&#xff1a; 2.主工具栏按钮不显示&#xff0c;或者鼠标移上去才显示&#xff08;刷新问题&#xff09;。 3&#xff0e;视口菜单不显示或显示不全。 问题分析&#xff1a; 首先&#x…

安全基础从0开始

文章目录 常见名词小实战 网站搭建小实战抓包模拟器状态码返回值网站搭建WEB应用安全漏洞 数据包&封包&信息收集**参考点** 常见名词 前后端&#xff0c;POC/EXP&#xff0c;Payload/Shellcode&#xff0c;后门/Webshell&#xff0c;木马/病毒&#xff0c; 反弹&…