文章目录
- 1、基本操作
- 1.1、创建SparkSession
- 1.2、创建DataFrames
- 1.3、创建Dataset操作
- 1.4、运行sql查询
- 1.5、创建全局临时视图
- 1.6、创建Datasets
- 1.7、与rdd进行互操作
- 1.7.1、使用反射推断模式
- 1.7.2、以编程方式指定模式
- 2、完整的测试例子
1、基本操作
1.1、创建SparkSession
import org.apache.spark.sql.SparkSession;SparkSession spark = SparkSession
.builder()
.appName("Java Spark SQL basic example")
.config("spark.some.config.option", "some-value")
.getOrCreate();
1.2、创建DataFrames
import org.apache.spark.sql.Dataset;
import org.apache.spark.sql.Row;Dataset<Row> df = spark.read().json("examples/src/main/resources/people.json");// Displays the content of the DataFrame to stdout
df.show();
// +----+-------+
// | age| name|
// +----+-------+
// |null|Michael|
// | 30| Andy|
// | 19| Justin|
// +----+-------+
1.3、创建Dataset操作
// col("...") is preferable to df.col("...")
import static org.apache.spark.sql.functions.col;// Print the schema in a tree format
df.printSchema();
// root
// |-- age: long (nullable = true)
// |-- name: string (nullable = true)// Select only the "name" column
df.select("name").show();
// +-------+
// | name|
// +-------+
// |Michael|
// | Andy|
// | Justin|
// +-------+// Select everybody, but increment the age by 1
df.select(col("name"), col("age").plus(1)).show();
// +-------+---------+
// | name|(age + 1)|
// +-------+---------+
// |Michael| null|
// | Andy| 31|
// | Justin| 20|
// +-------+---------+// Select people older than 21
df.filter(col("age").gt(21)).show();
// +---+----+
// |age|name|
// +---+----+
// | 30|Andy|
// +---+----+// Count people by age
df.groupBy("age").count().show();
// +----+-----+
// | age|count|
// +----+-----+
// | 19| 1|
// |null| 1|
// | 30| 1|
// +----+-----+
1.4、运行sql查询
import org.apache.spark.sql.Dataset;
import org.apache.spark.sql.Row;// Register the DataFrame as a SQL temporary view
df.createOrReplaceTempView("people");Dataset<Row> sqlDF = spark.sql("SELECT * FROM people");
sqlDF.show();
// +----+-------+
// | age| name|
// +----+-------+
// |null|Michael|
// | 30| Andy|
// | 19| Justin|
// +----+-------+
1.5、创建全局临时视图
// Register the DataFrame as a global temporary view
df.createGlobalTempView("people");// Global temporary view is tied to a system preserved database `global_temp`
spark.sql("SELECT * FROM global_temp.people").show();
// +----+-------+
// | age| name|
// +----+-------+
// |null|Michael|
// | 30| Andy|
// | 19| Justin|
// +----+-------+// Global temporary view is cross-session
spark.newSession().sql("SELECT * FROM global_temp.people").show();
// +----+-------+
// | age| name|
// +----+-------+
// |null|Michael|
// | 30| Andy|
// | 19| Justin|
// +----+-------+
1.6、创建Datasets
import java.util.Arrays;
import java.util.Collections;
import java.io.Serializable;import org.apache.spark.api.java.function.MapFunction;
import org.apache.spark.sql.Dataset;
import org.apache.spark.sql.Row;
import org.apache.spark.sql.Encoder;
import org.apache.spark.sql.Encoders;public static class Person implements Serializable {private String name;private long age;public String getName() {return name;}public void setName(String name) {this.name = name;}public long getAge() {return age;}public void setAge(long age) {this.age = age;}
}// Create an instance of a Bean class
Person person = new Person();
person.setName("Andy");
person.setAge(32);// Encoders are created for Java beans
Encoder<Person> personEncoder = Encoders.bean(Person.class);
Dataset<Person> javaBeanDS = spark.createDataset(Collections.singletonList(person),personEncoder
);
javaBeanDS.show();
// +---+----+
// |age|name|
// +---+----+
// | 32|Andy|
// +---+----+// Encoders for most common types are provided in class Encoders
Encoder<Long> longEncoder = Encoders.LONG();
Dataset<Long> primitiveDS = spark.createDataset(Arrays.asList(1L, 2L, 3L), longEncoder);
Dataset<Long> transformedDS = primitiveDS.map((MapFunction<Long, Long>) value -> value + 1L,longEncoder);
transformedDS.collect(); // Returns [2, 3, 4]// DataFrames can be converted to a Dataset by providing a class. Mapping based on name
String path = "examples/src/main/resources/people.json";
Dataset<Person> peopleDS = spark.read().json(path).as(personEncoder);
peopleDS.show();
// +----+-------+
// | age| name|
// +----+-------+
// |null|Michael|
// | 30| Andy|
// | 19| Justin|
// +----+-------+
1.7、与rdd进行互操作
1.7.1、使用反射推断模式
Spark SQL支持将JavaBeans的RDD自动转换为DataFrame。使用反射获得的BeanInfo定义了表的模式。目前,Spark SQL不支持包含Map字段的JavaBeans。但是支持嵌套JavaBeans和List或Array字段。您可以通过创建一个实现Serializable的类来创建JavaBean,并且该类的所有字段都有getter和setter。
import org.apache.spark.api.java.JavaRDD;
import org.apache.spark.api.java.function.Function;
import org.apache.spark.api.java.function.MapFunction;
import org.apache.spark.sql.Dataset;
import org.apache.spark.sql.Row;
import org.apache.spark.sql.Encoder;
import org.apache.spark.sql.Encoders;// Create an RDD of Person objects from a text file
JavaRDD<Person> peopleRDD = spark.read().textFile("examples/src/main/resources/people.txt").javaRDD().map(line -> {String[] parts = line.split(",");Person person = new Person();person.setName(parts[0]);person.setAge(Integer.parseInt(parts[1].trim()));return person;});// Apply a schema to an RDD of JavaBeans to get a DataFrame
Dataset<Row> peopleDF = spark.createDataFrame(peopleRDD, Person.class);
// Register the DataFrame as a temporary view
peopleDF.createOrReplaceTempView("people");// SQL statements can be run by using the sql methods provided by spark
Dataset<Row> teenagersDF = spark.sql("SELECT name FROM people WHERE age BETWEEN 13 AND 19");// The columns of a row in the result can be accessed by field index
Encoder<String> stringEncoder = Encoders.STRING();
Dataset<String> teenagerNamesByIndexDF = teenagersDF.map((MapFunction<Row, String>) row -> "Name: " + row.getString(0),stringEncoder);
teenagerNamesByIndexDF.show();
// +------------+
// | value|
// +------------+
// |Name: Justin|
// +------------+// or by field name
Dataset<String> teenagerNamesByFieldDF = teenagersDF.map((MapFunction<Row, String>) row -> "Name: " + row.<String>getAs("name"),stringEncoder);
teenagerNamesByFieldDF.show();
// +------------+
// | value|
// +------------+
// |Name: Justin|
// +------------+
1.7.2、以编程方式指定模式
当JavaBean类不能提前定义时(例如,记录的结构被编码为字符串,或者文本数据集将被解析,字段将以不同的方式投影给不同的用户),可以通过三个步骤以编程方式创建dataset 。
- 从原始RDD的行创建一个RDD;
- 创建由StructType表示的模式,该模式与步骤1中创建的RDD中的Rows结构相匹配。
- 通过SparkSession提供的createDataFrame方法将模式应用到RDD的行。
import java.util.ArrayList;
import java.util.List;import org.apache.spark.api.java.JavaRDD;
import org.apache.spark.api.java.function.Function;import org.apache.spark.sql.Dataset;
import org.apache.spark.sql.Row;import org.apache.spark.sql.types.DataTypes;
import org.apache.spark.sql.types.StructField;
import org.apache.spark.sql.types.StructType;// Create an RDD
JavaRDD<String> peopleRDD = spark.sparkContext().textFile("examples/src/main/resources/people.txt", 1).toJavaRDD();// The schema is encoded in a string
String schemaString = "name age";// Generate the schema based on the string of schema
List<StructField> fields = new ArrayList<>();
for (String fieldName : schemaString.split(" ")) {StructField field = DataTypes.createStructField(fieldName, DataTypes.StringType, true);fields.add(field);
}
StructType schema = DataTypes.createStructType(fields);// Convert records of the RDD (people) to Rows
JavaRDD<Row> rowRDD = peopleRDD.map((Function<String, Row>) record -> {String[] attributes = record.split(",");return RowFactory.create(attributes[0], attributes[1].trim());
});// Apply the schema to the RDD
Dataset<Row> peopleDataFrame = spark.createDataFrame(rowRDD, schema);// Creates a temporary view using the DataFrame
peopleDataFrame.createOrReplaceTempView("people");// SQL can be run over a temporary view created using DataFrames
Dataset<Row> results = spark.sql("SELECT name FROM people");// The results of SQL queries are DataFrames and support all the normal RDD operations
// The columns of a row in the result can be accessed by field index or by field name
Dataset<String> namesDS = results.map((MapFunction<Row, String>) row -> "Name: " + row.getString(0),Encoders.STRING());
namesDS.show();
// +-------------+
// | value|
// +-------------+
// |Name: Michael|
// | Name: Andy|
// | Name: Justin|
// +-------------+
2、完整的测试例子
本例子代码是在window下测试,需要下载https://github.com/steveloughran/winutils,解压放在hadoop对应目录
package com.penngo.spark;import org.apache.log4j.Level;
import org.apache.log4j.Logger;
import org.apache.spark.api.java.JavaRDD;
import org.apache.spark.api.java.function.Function;
import org.apache.spark.api.java.function.MapFunction;
import org.apache.spark.sql.*;
import org.apache.spark.sql.types.DataTypes;
import org.apache.spark.sql.types.StructField;
import org.apache.spark.sql.types.StructType;import java.io.Serializable;
import java.util.ArrayList;
import java.util.Arrays;
import java.util.Collections;
import java.util.List;import static org.apache.spark.sql.functions.col;public class SparkDataset {private static final String jsonPath = "D:\\hadoop\\spark\\resources\\people.json";private static final String txtPath = "D:\\hadoop\\spark\\resources\\people.txt";public static class Person implements Serializable {private String name;private long age;public String getName() {return name;}public void setName(String name) {this.name = name;}public long getAge() {return age;}public void setAge(long age) {this.age = age;}}public static void createDataFrame(SparkSession spark) throws Exception{// 创建DataFrameDataset<Row> df = spark.read().json(jsonPath);df.show();// 操作operations(df);// sql查询sqlQuery(spark, df);}public static void operations(Dataset<Row> df){df.printSchema();// root// |-- age: long (nullable = true)// |-- name: string (nullable = true)// Select only the "name" columndf.select("name").show();// +-------+// | name|// +-------+// |Michael|// | Andy|// | Justin|// +-------+// Select everybody, but increment the age by 1df.select(col("name"), col("age").plus(1)).show();// +-------+---------+// | name|(age + 1)|// +-------+---------+// |Michael| null|// | Andy| 31|// | Justin| 20|// +-------+---------+// Select people older than 21df.filter(col("age").gt(21)).show();// +---+----+// |age|name|// +---+----+// | 30|Andy|// +---+----+// Count people by agedf.groupBy("age").count().show();// +----+-----+// | age|count|// +----+-----+// | 19| 1|// |null| 1|// | 30| 1|// +----+-----+}/*** SQL查询*/public static void sqlQuery(SparkSession spark, Dataset<Row> df) throws Exception{// 临时视图,会话消失,视图也会消失df.createOrReplaceTempView("people");Dataset<Row> sqlDF = spark.sql("SELECT * FROM people");sqlDF.show();// 全局视图,全局临时视图绑定到系统保留的数据库' global_temp 'df.createGlobalTempView("people");spark.sql("SELECT * FROM global_temp.people").show();// +----+-------+// | age| name|// +----+-------+// |null|Michael|// | 30| Andy|// | 19| Justin|// +----+-------+// 全局临时视图是跨会话的spark.newSession().sql("SELECT * FROM global_temp.people").show();// +----+-------+// | age| name|// +----+-------+// |null|Michael|// | 30| Andy|// | 19| Justin|// +----+-------+}public static void createDataset(SparkSession spark){// 列表转成datasetPerson person = new Person();person.setName("Andy");person.setAge(32);Encoder<Person> personEncoder = Encoders.bean(Person.class);Dataset<Person> javaBeanDS = spark.createDataset(Collections.singletonList(person),personEncoder);System.out.println("createDataset show");javaBeanDS.show();// +---+----+// |age|name|// +---+----+// | 32|Andy|// +---+----+Encoder<Long> longEncoder = Encoders.LONG();Dataset<Long> primitiveDS = spark.createDataset(Arrays.asList(1L, 2L, 3L), longEncoder);Dataset<Long> transformedDS = primitiveDS.map((MapFunction<Long, Long>) value -> value + 1L,longEncoder);transformedDS.collect(); // Returns [2, 3, 4]// 读取文件转成datasetDataset<Person> peopleDS = spark.read().json(jsonPath).as(personEncoder);peopleDS.show();// +----+-------+// | age| name|// +----+-------+// |null|Michael|// | 30| Andy|// | 19| Justin|// +----+-------+}/*** 非Bean的方式转换:rdd->DataFrame->Dataset* @param spark* @throws Exception*/public static void rddToDataset(SparkSession spark) throws Exception{// 读取文件生成一个Person类型的RDDJavaRDD<Person> peopleRDD = spark.read().textFile(txtPath).javaRDD().map(line -> {String[] parts = line.split(",");Person person = new Person();person.setName(parts[0]);person.setAge(Integer.parseInt(parts[1].trim()));return person;});// RDD转成DataFrameDataset<Row> peopleDF = spark.createDataFrame(peopleRDD, Person.class);// 把DataFrame注册为临时视图peopleDF.createOrReplaceTempView("people");// SQL语句可以通过spark提供的SQL方法来运行Dataset<Row> teenagersDF = spark.sql("SELECT name FROM people WHERE age BETWEEN 13 AND 19");// 结果中一行的列可以通过字段索引访问Encoder<String> stringEncoder = Encoders.STRING();Dataset<String> teenagerNamesByIndexDF = teenagersDF.map((MapFunction<Row, String>) row -> "Name: " + row.getString(0),stringEncoder);teenagerNamesByIndexDF.show();// +------------+// | value|// +------------+// |Name: Justin|// +------------+// 也可以通过字段名访问Dataset<String> teenagerNamesByFieldDF = teenagersDF.map((MapFunction<Row, String>) row -> "Name: " + row.<String>getAs("name"),stringEncoder);teenagerNamesByFieldDF.show();// +------------+// | value|// +------------+// |Name: Justin|// +------------+}/*** 非Bean的方式转换:rdd->DataFrame->Dataset* @param spark* @throws Exception*/public static void rddToDataset2(SparkSession spark) throws Exception{// 创建RDDJavaRDD<String> peopleRDD = spark.sparkContext().textFile(txtPath, 1).toJavaRDD();// 字段字义String schemaString = "name age";// 根据schema的字符串生成schemaList<StructField> fields = new ArrayList<>();for (String fieldName : schemaString.split(" ")) {StructField field = DataTypes.createStructField(fieldName, DataTypes.StringType, true);fields.add(field);}StructType schema = DataTypes.createStructType(fields);// 将RDD(people)的记录转换为视图的RowJavaRDD<Row> rowRDD = peopleRDD.map((Function<String, Row>) record -> {String[] attributes = record.split(",");return RowFactory.create(attributes[0], attributes[1].trim());});// 将schema应用于RDD,转为DataFrameDataset<Row> peopleDataFrame = spark.createDataFrame(rowRDD, schema);// 使用DataFrame创建临时视图peopleDataFrame.createOrReplaceTempView("people");// SQL可以在使用dataframe创建的临时视图上运行Dataset<Row> results = spark.sql("SELECT name FROM people");// SQL查询的结果是dataframe,支持所有正常的RDD操作// 结果行的列可以通过字段索引或字段名称访问Dataset<String> namesDS = results.map((MapFunction<Row, String>) row -> "Name: " + row.getString(0),Encoders.STRING());namesDS.show();// +-------------+// | value|// +-------------+// |Name: Michael|// | Name: Andy|// | Name: Justin|// +-------------+}public static void main(String[] args) throws Exception{Logger.getLogger("org.apache.spark").setLevel(Level.WARN);Logger.getLogger("org.apache.eclipse.jetty.server").setLevel(Level.OFF);//windows下调试spark需要使用https://github.com/steveloughran/winutilsSystem.setProperty("hadoop.home.dir", "D:\\hadoop\\hadoop-3.3.1");System.setProperty("HADOOP_USER_NAME", "root");SparkSession spark = SparkSession.builder().appName("SparkDataset").master("local[*]").getOrCreate();createDataFrame(spark);createDataset(spark);rddToDataset(spark);rddToDataset2(spark);spark.stop();}
}
参考自官方文档:https://spark.apache.org/docs/3.1.2/sql-getting-started.html
spark支持数据源:https://spark.apache.org/docs/3.1.2/sql-data-sources.html
spark sql语法相关:https://spark.apache.org/docs/3.1.2/sql-ref.html