OpenGLES:glReadPixels()获取相机GLSurfaceView预览数据并保存

Android现行的Camera API2机制可以通过onImageAvailable(ImageReader reader)回调从底层获取到Jpeg、YuvRaw三种格式的Image,然后通过保存Image实现拍照功能,但是却并没有Api能直接在上层直接拿到实时预览的数据。

Android Camera预览的实现是上层下发SurfaceCameraHAL,由CameraHAL也就是android.hardware.camera.provider@2.4-service进程往Surface对应的Buffer中填充预览数据,然后再copySurfaceFling中由OpenGL进行渲染显示。

实际相机开发中,不仅仅只是要实现预览,还经常需要拿到预览数据做一些特效处理,那么问题来了,怎么在相机App获取到实时预览数据呢?

这跟上层Camera App用于显示SurfaceView控件有关:

  • 如果上层使用的是GLSurfaceView,可以直接通过OpenGLESglReadPixels()获取到copy到显存中的预览数据
  • 如果上层使用的不是GLSurfaceView,可以通过自己搭建EGL环境,然后在EGL环境中调用OpenGLESglReadPixels()获取到预览数据。

GLSurfaceView其实就是Android封装好的EGL+SufaceView控件,Android的所有渲染最终都是通过OpenGL来实现的,所以万变不离其宗,本质上上层Camera App都只能通过OpenGLESglReadPixels()实现预览数据的获取。

一个SurfaceAndroid EGL中对应一个FrameBuffer,学习过OpenGL的应该都知道,一个FrameBuffer会有多个附着(attachment),其中必须且只能有一个ColorBuffer附着,有一个或多个StencilBufferDepthBuffer附着

glReadPixels()仅限于读取ColorBuffer,无法读取DepthBufferStencilBuffer,它可以将图像内容从显存读取到内存中,将ColorBuffer中的像素值保存到预分配的内存缓冲区。

前面关于OpenGLES的博文中,有两篇是使用OpenGLES实现相机的相关功能,一篇是《OpenGLES:GLSurfaceView实现Android Camera预览》,一篇是《OpenGLES:相机实时滤镜四宫格、九宫格》,今天就在这两篇博文基础上实现相机预览数据的获取和保存。

相机实现部分在此不做过多讲解,有兴趣的可以参看前面两篇博文,有详细的讲解
本文主要展示glReadPixels()对相机预览数据获取的实现

代码实现其实很简单
GLSurfaceView.Renderer实现类的onDrawFrame(GL10 gl)函数中新增如下代码段:

if (shouldTakePic) {//预览尺寸int w = 1080;int h = 1440;//预览数据保存成照片的目录String savePath = Environment.getExternalStorageDirectory().getPath() + "/DCIM/MyCamera/";int[] iat = new int[w * h];IntBuffer ib = IntBuffer.allocate(w * h);//(0,580)距离屏幕左下角的距离,与glViewport(0, 580,...)保持一致glReadPixels(0, 580, w, h, GL_RGBA, GL_UNSIGNED_BYTE, ib);int[] ia = ib.array();//glReadPixels 读取的内容是上下翻转的,要处理一下for (int i = 0; i < h; i++) {for (int j = 0; j < w; j++) {iat[(h - i - 1) * w + j] = ia[i * w + j];}}Bitmap inBitmap = Bitmap.createBitmap(w, h, Bitmap.Config.ARGB_8888);inBitmap.copyPixelsFromBuffer(IntBuffer.wrap(iat));ByteArrayOutputStream bos = new ByteArrayOutputStream();inBitmap.compress(Bitmap.CompressFormat.JPEG, 90, bos);byte[] bitmapData = bos.toByteArray();File tempDir = new File(savePath);tempDir.mkdirs();String fileName = "temp_" + System.currentTimeMillis() + ".jpeg";File imgFile = new File(savePath, fileName);try {FileOutputStream output = new FileOutputStream(imgFile);output.write(bitmapData);output.flush();output.close();Log.v(TAG, "ImageReader X");} catch (Exception e) {e.printStackTrace();} finally {inBitmap.recycle();}
}

glReadPixels读取的内容上下翻转处理还有另外一种实现,
原理都是一样的,实现起来大同小异

if (shouldTakePic) {//预览尺寸int w = 1080;int h = 1440;//预览数据保存成照片的目录String savePath = Environment.getExternalStorageDirectory().getPath() + "/DCIM/MyCamera/";int b[] = new int[(int) (w * h)];int bt[] = new int[(int) (w * h)];IntBuffer buffer = IntBuffer.wrap(b);buffer.position(0);//(0,580)距离屏幕左下角的距离,与glViewport(0, 580,...)保持一致glReadPixels(0, 580, w, h, GL_RGBA, GL_UNSIGNED_BYTE, buffer);for (int i = 0; i < h; i++) {for (int j = 0; j < w; j++) {int pix = b[i * w + j];int pb = (pix >> 16) & 0xff;int pr = (pix << 16) & 0x00ff0000;int pix1 = (pix & 0xff00ff00) | pr | pb;bt[(h - i - 1) * w + j] = pix1;}}Bitmap inBitmap = Bitmap.createBitmap(w, h, Bitmap.Config.ARGB_8888);inBitmap.copyPixelsFromBuffer(buffer);inBitmap = Bitmap.createBitmap(bt, w, h, Bitmap.Config.ARGB_8888);ByteArrayOutputStream bos = new ByteArrayOutputStream();inBitmap.compress(Bitmap.CompressFormat.JPEG, 90, bos);byte[] bitmapData = bos.toByteArray();ByteArrayInputStream fis = new ByteArrayInputStream(bitmapData);String tempPicFile = "temp_" + System.currentTimeMillis() + ".jpeg";File tempDir = new File(savePath);tempDir.mkdirs();try {File tmpFile = new File(tempDir, tempPicFile);FileOutputStream fos = new FileOutputStream(tmpFile);byte[] buf = new byte[1024];int len;while ((len = fis.read(buf)) > 0) {fos.write(buf, 0, len);}fis.close();fos.close();inBitmap.recycle();} catch (FileNotFoundException e) {e.printStackTrace();} catch (IOException e) {e.printStackTrace();}
}

验证下效果,抓两张预览照试试:

抓一张普通预览:

抓一张四宫格滤镜预览:

 

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/212337.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

Java学习笔记——instanceof关键字

instanceof关键字&#xff1a; 作用&#xff1a;保证对象向下转型的安全性在对象向下转型前判断某一对象实例是否属于某个类 判断时&#xff0c;如果对象是null&#xff0c;则 instanceof 判断结果为 false

Spring Boot 整合kafka:生产者ack机制和消费者AckMode消费模式、手动提交ACK

目录 生产者ack机制消费者ack模式手动提交ACK 生产者ack机制 Kafka 生产者的 ACK 机制指的是生产者在发送消息后&#xff0c;对消息副本的确认机制。ACK 机制可以帮助生产者确保消息被成功写入 Kafka 集群中的多个副本&#xff0c;并在需要时获取确认信息。 Kafka 提供了三种…

ei源刊和ei会议的几个区别

1、含义不同 公开发表论文&#xff0c;可以在期刊上刊登&#xff0c;也可以在会议上宣读。ei源刊对应的是期刊&#xff0c;是指被ei检索收录的工程类的期刊。ei会议对应的是会议&#xff0c;是指被ei检索收录的会议。 2、检索类型不同 期刊和会议都能被ei检索&#xff0c;但…

Tr0ll

信息收集 探测主机存活信息&#xff1a; nmap -sn --min-rate 10000 192.168.182.0/24Starting Nmap 7.94 ( https://nmap.org ) at 2023-11-14 15:45 CST Nmap scan report for 192.168.182.1 Host is up (0.00026s latency). MAC Address: 00:50:56:C0:00:08 (VMware) Nmap…

qt 双缓冲机制

在图形编程中&#xff0c;双缓冲机制是一种常用的技术&#xff0c;用于减少图形绘制时的闪烁和抖动。它的基本思想是将图形绘制到一个后台缓冲中&#xff0c;然后一次性将后台缓冲的内容显示到屏幕上。 在 Qt 中&#xff0c;双缓冲机制可以通过QPainter的begin()和end()方法来实…

Linux环境下socket本地通信

最近项目有用到了socket本地通信&#xff0c;故复习一下。之前都是基于本地虚拟机的ip地址通信的&#xff0c;现在项目&#xff0c;Linux单板上面有2个进程需要通信&#xff0c;故用到了本地socket通信&#xff0c;主要其实就是用了sockfd,文件描述符&#xff0c;也叫句柄。 服…

java接入gpt开发

前情提要 本次文章使用编译器为IDEA2020 使用GPT模型为百度旗下的千帆大模型 如果是个人用或者不流传出去&#xff0c;可以无脑入&#xff0c;因为会免费送20块钱&#xff08;够用上万次&#xff09; 代金卷查看 正式教程&#xff1a; 百度智能云控制台 (baidu.com) 按照步…

JMS(Java Message Service)使用指南

介绍 JMS即Java消息服务&#xff08;Java Message Service&#xff09;应用程序接口&#xff0c;是一个Java平台中关于面向消息中间件&#xff08;MOM&#xff09;的API&#xff0c;用于在两个应用程序之间&#xff0c;或分布式系统中发送消息&#xff0c;进行异步通信。它是一…

基于单片机智能病床呼叫系统设计

**单片机设计介绍&#xff0c;基于单片机智能病床呼叫系统设计 文章目录 一 概要二、功能设计设计思路 三、 软件设计原理图 五、 程序六、 文章目录 一 概要 基于单片机的智能病床呼叫系统是一种利用单片机技术设计的医疗设备&#xff0c;它能够帮助病人在住院期间快速、方便…

国内大厂机器人赛道产品

大疆 大疆无人机自然不必说&#xff0c;除此之外大疆搞机甲大师&#xff0c;教育机器人。 字节 当前字节在机器人领域只是初步探索阶段&#xff0c;目前尚未发布相关产品&#xff08;截止至23.12&#xff09;。 管理层想法&#xff1a; 跟已有业务做结合&#xff0c;服务好…

Java设计模式分类

java的设计模式大体上分为三大类&#xff1a; 创建型模式&#xff08;5种&#xff09;&#xff1a;工厂方法模式&#xff0c;抽象工厂模式&#xff0c;单例模式&#xff0c;建造者模式&#xff0c;原型模式。 结构型模式&#xff08;7种&#xff09;&#xff1a;适配器模式&am…

传感器(一) :IMU / 陀螺仪模块

IMU / 陀螺仪模块 一、概述二、注意参数2.1 陀螺仪芯片标准&#xff08;MPU6050)2.2 参数说明 三、IMU模式使用注意事项3.1 IMU模块安装注意事项3.2 为什么IMU要安装在机器中心位置 四、常见陀螺仪芯片品牌 一、概述 IMU全称为惯性测量单元&#xff0c;可以通过测量物体在三维空…

Linux实用操作

一、各类小技巧&#xff08;快捷键&#xff09; 1.1 ctrl c 强制停止 Linux某些程序的运行&#xff0c;如果想要强制停止它&#xff0c;可以使用快捷键ctrl c 命令输入错误&#xff0c;也可以通过快捷键ctrl c&#xff0c;退出当前输入&#xff0c;重新输入 1.2 ctrl d…

Leetcode刷题笔记——摩尔投票法

摩尔投票法的核心思想为对拼消耗。 摩你妈&#xff0c;学不会&#xff01;&#xff01;&#xff01;&#xff01; 229. 多数元素 II - 力扣&#xff08;LeetCode&#xff09;

ReLU(Rectified Linear Unit)和Sigmoid激活函数

ReLU&#xff08;Rectified Linear Unit&#xff09;和Sigmoid都是神经网络中常用的激活函数。 特点&#xff1a; ReLU是一种简单而有效的激活函数。它对于正数部分直接返回输入&#xff0c;对于负数部分返回零。这种非线性转换有助于网络学习更复杂的表示。ReLU在许多深度学习…

自治调优!人大金仓解放DBA双手

数据库系统的性能是确保整个应用系统高效运转的关键因素&#xff0c;因此数据库性能调优工作至关重要。KingbaseES通过将人工调优过程内化为数据库内核&#xff0c;成功实现了自治调优。这种创新的调优方案为DBA提供了更高效且准确的性能调优途径&#xff0c;同时也显著降低了数…

23秋 操作系统真题回忆

总结&#xff1a; 量大 综合性强 结合实验很紧密具体的题目 不是很记得了 只记了大概希望有人可以一起参与把这个题的答案做出来&#xff0c;有可以的 可以私信我谢谢 需要你们的想法因为可能涉及学校内部的试题&#xff0c;禁止转载 2013题目 真题 2023题目 进程 代码执…

构建VREP和MATLAB联合仿真实验平台,控制机械臂末端按照固定轨迹移动

构建VREP和MATLAB联合仿真实验平台&#xff0c;控制机械臂末端按照固定轨迹移动。主要工作如下&#xff1a; &#xff08;1&#xff09;solidworks构建机械臂模型&#xff1b; &#xff08;2&#xff09;将solidworks中构建的模型导入VREP中建立机械臂的多体动力学模型&#xf…

【Unity动画】什么是任意状态(Any state)

&#xff08;Any state&#xff09;可以从某个状态A直接切换到另一个状态 B\C\D\E\F 比如A到C的过渡&#xff0c;直接设置从Any state 到C的过渡线触发参数即可。而不需要让A到C直接在连接&#xff0c;同样&#xff0c;B到C之间也无需直接链接。 这样设计是在每一个动画之间都…

HP-UNIX 系统安全基线 安全加固操作

目录 账号管理、认证授权 账号 ELK-HP-UX-01-01-01 ELK -HP-UX-01-01-02 ELK -HP-UX-01-01-03 ​​​​​​​ ELK-HP-UX-01-01-04 ​​​​​​​ELK-HP-UX-01-01-05 ​​​​​​​口令 ELK-HP-UX-01-02-01 ​​​​​​​ ELK-HP-UX-01-02-02 ​​​​​​​ ELK-HP…