Redis的缓存穿透、缓存击穿和缓存雪崩

目录

一、解释说明

二、缓存穿透

1. 什么是缓存穿透?

2. 常见的两种解决方案

  (1)缓存空对象

 (2)布隆过滤

3. 编码解决商品查询的缓存穿透问题

三、缓存雪崩

1.  什么是缓存雪崩?

2.  缓存雪崩解决方案(4种)

四、缓存击穿

 1.  什么是缓存击穿?

2、缓存击穿解决方案(2种)

  (1)互斥锁

  (2)逻辑过期

 3.  互斥锁与逻辑过期的对比分析​编辑

 五、利用互斥锁解决缓存击穿问题

(1)首先,我们声明一下获取锁、释放锁的方法,tryLock()、unLock()

(2)互斥锁解决缓存击穿 queryWithMutex() 

六、利用逻辑过期解决缓存击穿问题

(1)添加逻辑过期时间的字段

(2)逻辑过期解决缓存击穿问题 queryWithLogicalExpire()

七、封装 Redis 工具类


一、解释说明

   Redis缓存穿透、缓存击穿和缓存雪崩都是缓存机制中的一些问题,具体解释如下:

(1)缓存穿透(Cache Penetration):指查询一个不存在的数据,由于缓存中没有数据,所以这个查询请求会直接穿过缓存层,到达数据库层,造成了数据库的压力。攻击者可以通过构造恶意请求,使得缓存层无法命中任何数据,从而导致请求直接访问数据库,从而引起数据库压力过大。(2)缓存击穿(Cache Breakdown):指缓存中某个热点数据失效,此时有大量并发请求同时访问这个失效的数据,导致这些请求直接访问数据库,造成数据库压力过大,甚至导致数据库崩溃。通常是由于缓存中某个热点数据过期失效,同时有大量并发请求访问该数据。(3)缓存雪崩(Cache Avalanche):指缓存中大量的数据失效,导致大量请求直接访问数据库,造成数据库压力过大。通常是由于缓存中大量的数据在同一时间失效,导致大量请求直接访问数据库。

  针对上述问题,可以采取以下措施:

(1)缓存穿透:可以在查询缓存之前,先对请求的参数进行合法性检查,如过滤非法字符、判断参数范围等;或者使用BloomFilter等数据结构,对查询参数进行过滤,只有在BloomFilter中判断有可能存在的情况下才会去查询数据库。(2)缓存击穿:可以使用锁机制或者分布式锁机制,避免大量并发请求同时访问失效的热点数据。另外可以设置热点数据的过期时间为随机时间,避免在同一时间大量数据同时失效。(3)缓存雪崩:可以采用多级缓存架构,减少缓存层的压力;或者设置不同的缓存过期时间,避免大量数据同时失效。另外可以在缓存层和数据库层之间添加限流、熔断等措施,避免因突发流量导致系统崩溃。

二、缓存穿透

1. 什么是缓存穿透?

    缓存穿透是指客户端请求的数据在缓存中和数据库中都不存在,这样缓存永远不会生效,这些请求都会打到数据库

2. 常见的两种解决方案

(1)缓存空对象

简单的来说,就是请求之后,发现数据不存在,就将null值打入Redis中。优点:实现简单,维护方便
缺点:额外的内存消耗可能造成短期的不一致
思路分析:当我们客户端访问不存在的数据时,先请求 redis,但是此时 redis 中没有数据,
此时会访问到数据库,但是数据库中也没有数据,这个数据穿透了缓存,直击数据库,
我们都知道数据库能够承载的并发不如 redis 这么高,如果大量的请求同时过来访问这种不存在的数据,
这些请求就都会访问到数据库,简单的解决方案就是哪怕这个数据在数据库中也不存在,
我们也把这个数据存入到 redis 中去,这样,下次用户过来访问这个不存在的数据,
那么在 redis 中也能找到这个数据就不会进入到数据库了。

 

 (2)布隆过滤

     在客户端与Redis之间加了一个布隆过滤器,对于请求进行过滤。 布隆过滤器的大致的原理:布隆过滤器中存放二进制位。数据库的数据通过hash算法计算其hash值并存放到布隆过滤器中,之后判断数据是否存在的时候,
就是判断该hash值是0还是1。但是这是一种概率上的统计,当其判断不存在的时候就一定是不存在;当其判断存在的时候就不一定存在。所以有一定的穿透风险
优点:内存占用较少,没有多余 key
缺点:实现复杂 存在误判可能

综上所述

               我们可以两种方案一起用,这样子最为保险。据统计使用布隆过滤器一般可以避免90%的无效请求。黑马程序员视频里是使用方案一(缓存空对象)

 3. 编码解决商品查询的缓存穿透问题

核心思路如下:在原来的逻辑中,我们如果发现这个数据在 mysql 中不存在,直接就返回 404 了,
这样是会存在缓存穿透问题的现在的逻辑中:如果这个数据不存在,我们不会返回 404 ,还是会把这个数据写入到 Redis 中,
并且将 value 设置为空,欧当再次发起查询时,我们如果发现命中之后,判断这个 value 是否是 null,
如果是 null,则是之前写入的数据,证明是缓存穿透数据,如果不是,则直接返回数据。

我们在这里只要做两件事:

 当查询数据在数据库中不存在时,将空值写入 redis判断缓存是否命中后,再加一个判断是否为空值
@Override
public Result queryById(Long id) {// 从redis查询商铺缓存String key = CACHE_SHOP_KEY + id;String shopJson = stringRedisTemplate.opsForValue().get(key);// 判断是否存在if (StrUtil.isNotBlank(shopJson)) {// 存在,直接返回Shop shop = JSONUtil.toBean(shopJson, Shop.class);return Result.ok(shop);}// 1.判断空值if (shopJson != null) {// 返回一个错误信息return Result.fail("店铺不存在!");}// 不存在,根据id查询数据库Shop shop = getById(id);// 不存在,返回错误if (shop == null) {// 2.防止穿透问题,将空值写入redis!!!stringRedisTemplate.opsForValue().set(key,"",CACHE_NULL_TTL,TimeUnit.MINUTES);return Result.fail("店铺不存在!");}// 存在,写入Redis// 把shop转换成为JSON形式写入Redis// 同时添加超时时间stringRedisTemplate.opsForValue().set(key, JSONUtil.toJsonStr(shop), CACHE_SHOP_TTL, TimeUnit.MINUTES);return Result.ok(shop);
}

总结:

缓存穿透产生的原因是什么?

用户请求的数据在缓存中和数据库中都不存在,不断发起这样的请求,给数据库带来巨大压力

缓存穿透的解决方案有哪些?

(1)缓存 null 值
(2)布隆过滤
(3)增强 id 的复杂度,避免被猜测 id 规律
(4)做好数据的基础格式校验
(5)加强用户权限校验
(6)做好热点参数的限流

三、缓存雪崩

1.  什么是缓存雪崩?

        缓存雪崩是指在同一时段大量的缓存key同时失效或者Redis服务宕机,导致大量请求到达数据库,带来巨大压力。

        情况大致如下图所示:

2.  缓存雪崩解决方案(4种)

(1)给不同的Key的TTL添加随机值(推荐)操作简单,当我们在做缓存预热的时候,就有可能在同一时间批量插入大量的数据,
那么如果它们的TTL都一样的话就可能出现大量key同时过期的情况!!!
所以我们需要在设置过期时间TTL的时候,定义一个范围,追加该范围内的一个随机数。(2)利用Redis集群提高服务的可用性使用集群提高可靠性,后续讲解~~~之后写了会在这里贴上链接。(3)给缓存业务添加降级限流策略也是后续的微服务的知识~~~SpringCloud中有提!!!(4)给业务添加多级缓存  请求到达浏览器,nginx可以做缓存,未命中找Redis,再未命中找JVM,最后到数据库......

四、缓存击穿

 1.  什么是缓存击穿?

缓存雪崩是因为大量的key同时过期所导致的问题,而缓存击穿则是部分key过期导致的严重后果

为什么大量key过期会产生问题而少量的key也会有问题?缓存击穿问题也叫热点Key问题,就是⼀个被高并发访问并且缓存重建业务较复杂的key突然失效了,
无数的请求访问会在瞬间给数据库带来巨大的冲击。

具体情况如下图所示:

 上述:假设此时该热点key的TTL时间到(失效了),则查询缓存未命中,会继续查询数据库,并进行缓存重建工作但是由于查询SQL逻辑比较复杂、重建缓存的时间较久,并且该key又是热点key,短时间内有大量的线程对其进行访问,所以请求会直接 “打到” 数据库中,数据库就有可能崩掉

2、缓存击穿解决方案(2种)

(1)互斥锁

简单的来说:并不是所有的线程都有 “ 资格 ” 去访问数据库,只有持有锁的线程才可以对其进行操作。
不过该操作有一个很明显的问题,就是会出现相互等待的情况。

  (2)逻辑过期

不设置TTL之前所说导致缓存击穿的原因就是该key的TTL到期了,所以我们在这就不设置TTL了,
而是使用一个字段,例如:expire表示过期时间(逻辑上的)。当我们想让它 “ 过期 ” 的时候,
我们可以直接手动将其删除(热点key,即只是在一段时间内,其被访问的频次很高)。这种方案巧妙在于,异步的构建缓存,缺点在于在构建完缓存之前,返回的都是脏数据。

 3.  互斥锁与逻辑过期的对比分析

 五、利用互斥锁解决缓存击穿问题

 核心思路:相较于原来从缓存中查询不到数据后直接查询数据库而言,现在的方案是 进行查询之后,
如果从缓存没有查询到数据,则进行互斥锁的获取,获取互斥锁后,判断是否获得到了锁,如果没有获得到,
则休眠,过一会再进行尝试,直到获取到锁为止,才能进行查询如果获取到了锁的线程,再去进行查询,查询后将数据写入 redis,再释放锁,返回数据,
利用互斥锁就能保证只有一个线程去执行操作数据库的逻辑,防止缓存击穿。

代码实现

(1)首先,我们声明一下获取锁、释放锁的方法,tryLock()、unLock()

/*** 获取锁* @param key* @return
*/
private boolean tryLock(String key) {// setnx 就是 setIfAbsent 如果存在Boolean flag = stringRedisTemplate.opsForValue().setIfAbsent(key, "1", 10, TimeUnit.MINUTES);// 装箱是将值类型装换成引用类型的过程;拆箱就是将引用类型转换成值类型的过程// 不要直接返回flag,可能为nullreturn BooleanUtil.isTrue(flag);
}/*** 释放锁* @param key*/
private void unLock(String key) {stringRedisTemplate.delete(key);
}

注意:这里的锁不是真正的线程锁,而是redis里面的一个特殊的key。

(2)互斥锁解决缓存击穿 queryWithMutex() 

/*** 互斥锁解决缓存击穿 queryWithMutex()* @param id* @return*/
public Shop queryWithMutex(Long id) {// 1.从redis查询商铺缓存String key = CACHE_SHOP_KEY + id;String shopJson = stringRedisTemplate.opsForValue().get(key);// 2.判断是否存在if (StrUtil.isNotBlank(shopJson)) {return JSONUtil.toBean(shopJson, Shop.class);}// 判断空值if (shopJson != null) {// 返回一个错误信息return null;}String lockKey = "lock:shop:" + id;Shop shop = null;try {// 4.实现缓存重建// 4.1获取互斥锁boolean isLock = tryLock(lockKey);// 4.2判断是否成功if (!isLock) {// 4.3失败,则休眠并重试Thread.sleep(50);// 递归return queryWithMutex(id);}// 4.4成功,根据id查询数据库shop = getById(id);// 模拟延迟Thread.sleep(200);// 5.不存在,返回错误if (shop == null) {stringRedisTemplate.opsForValue().set(key,"",CACHE_NULL_TTL,TimeUnit.MINUTES);return null;}// 6.存在,写入redisstringRedisTemplate.opsForValue().set(key,JSONUtil.toJsonStr(shop),CACHE_SHOP_TTL,TimeUnit.MINUTES);} catch (InterruptedException ex) {throw new RuntimeException(ex);} finally {// 7.释放锁unLock(lockKey);}// 8.返回return shop;
}

六、利用逻辑过期解决缓存击穿问题

需求:修改根据id查询商铺的业务,基于逻辑过期方式来解决缓存击穿问题

 

注意:这里的key是否过期,不是由redis控制的,而是由我们自己去手动编写逻辑去控制的。 

代码实现

(1)添加逻辑过期时间的字段

由于我们之前的Shop中是没有逻辑过期的字段,那么我们要如何让它带有这个属性,又不修改之前的代码呢?

新建一个RedisData对象,里面的data指的是Shop对象,而expireTime是逻辑过期时间。

即:我们可以使用 JSONUtil.toBean 将Shop对象通过序列化、反序列化到RedisData类的data属性中。

@Data
public class RedisData {// LocalDateTime : 同时含有年月日时分秒的日期对象// 并且LocalDateTime是线程安全的!private LocalDateTime expireTime;private Object data;
}

(2)逻辑过期解决缓存击穿问题 queryWithLogicalExpire()

缓存重建

/*** 重建缓存,先缓存预热一下,否则queryWithLogicalExpire() 的expire为null* @param id* @param expireSeconds*/
public void saveShopRedis(Long id, Long expireSeconds) {// 1.查询店铺数据Shop shop = getById(id);// 2.封装逻辑过期时间RedisData redisData = new RedisData();redisData.setData(shop);redisData.setExpireTime(LocalDateTime.now().plusSeconds(expireSeconds));  // 过期时间// 3.写入redisstringRedisTemplate.opsForValue().set(CACHE_SHOP_KEY + id, JSONUtil.toJsonStr(redisData));
}

先使用测试方法运行一下saveShopRedis(),否则redis里面没有expireTime !

 

private static final ExecutorService CACHE_REBUILD_EXECUTOR = Executors.newFixedThreadPool(10);/*** 逻辑过期解决缓存击穿问题 queryWithLogicalExpire()* 测试前要先缓存预热一下!不然 data 与 expireTime 的缓存值是null!* @param id* @return*/
public Shop queryWithLogicalExpire(Long id) {// 1.从redis查询商铺缓存String key = CACHE_SHOP_KEY + id;String shopJson = stringRedisTemplate.opsForValue().get(key);// 2.判断是否存在if (StrUtil.isBlank(shopJson)) {return null;}// 4.命中,需要将json反序列化为对象// redisData没有数据RedisData redisData = JSONUtil.toBean(shopJson, RedisData.class);Shop shop = JSONUtil.toBean((JSONObject) redisData.getData(), Shop.class);LocalDateTime expireTime = redisData.getExpireTime();// 5.判断是否过期if (expireTime.isAfter(LocalDateTime.now())) {// 5.1未过期,直接返回店铺信息return shop;}// 5.2已过期,需要缓存重建// 6.缓存重建// 6.1.获取互斥锁String lockKey = LOCK_SHOP_KEY + id;boolean islock = tryLock(lockKey);// 6.2.判断是否获取互斥锁成功if (islock) {// 6.3.成功,开启独立线程,实现缓存重建CACHE_REBUILD_EXECUTOR.submit( () -> {try {// 重建缓存,过期时间为20LsaveShopRedis(id,20L);} catch (Exception ex) {throw new RuntimeException(ex);} finally {unLock(lockKey);}});}// 6.4.返回过期店铺信息return shop;
}

可以看到在测试的时候,name的值为:“100XXXX”

修改一下数据库,将值改为:“900XXXX”,看看并发情况下缓存重建能否正确

 通过Jmeter做压力测试

 再查看Redis中的数据,可以看到name的值已经被修改了,而且上面的jmeter的每一个http都是正常的!

 

七、封装 Redis 工具类

基于 StringRedisTemplate 封装一个缓存工具类,满足下列需求:

方法 1:将任意 Java 对象序列化为 json 并存储在 string 类型的 key 中,并且可以设置 TTL 过期时间
方法 2:将任意 Java 对象序列化为 json 并存储在 string 类型的 key 中,并且可以设置逻辑过期时间,
用于处理缓

存击穿问题

方法 3:根据指定的 key 查询缓存,并反序列化为指定类型,利用缓存空值的方式解决缓存穿透问题
方法 4:根据指定的 key 查询缓存,并反序列化为指定类型,需要利用逻辑过期解决缓存击穿问题

将逻辑进行封装

@Slf4j
@Component
public class CacheClient {private final StringRedisTemplate stringRedisTemplate;private static final ExecutorService CACHE_REBUILD_EXECUTOR = Executors.newFixedThreadPool(10);public CacheClient(StringRedisTemplate stringRedisTemplate) {this.stringRedisTemplate = stringRedisTemplate;}public void set(String key, Object value, Long time, TimeUnit unit) {stringRedisTemplate.opsForValue().set(key, JSONUtil.toJsonStr(value), time, unit);}public void setWithLogicalExpire(String key, Object value, Long time, TimeUnit unit) {// 设置逻辑过期RedisData redisData = new RedisData();redisData.setData(value);redisData.setExpireTime(LocalDateTime.now().plusSeconds(unit.toSeconds(time)));// 写入RedisstringRedisTemplate.opsForValue().set(key, JSONUtil.toJsonStr(redisData));}public <R,ID> R queryWithPassThrough(String keyPrefix, ID id, Class<R> type, Function<ID, R> dbFallback, Long time, TimeUnit unit){String key = keyPrefix + id;// 1.从redis查询商铺缓存String json = stringRedisTemplate.opsForValue().get(key);// 2.判断是否存在if (StrUtil.isNotBlank(json)) {// 3.存在,直接返回return JSONUtil.toBean(json, type);}// 判断命中的是否是空值if (json != null) {// 返回一个错误信息return null;}// 4.不存在,根据id查询数据库R r = dbFallback.apply(id);// 5.不存在,返回错误if (r == null) {// 将空值写入redisstringRedisTemplate.opsForValue().set(key, "", CACHE_NULL_TTL, TimeUnit.MINUTES);// 返回错误信息return null;}// 6.存在,写入redisthis.set(key, r, time, unit);return r;}public <R, ID> R queryWithLogicalExpire(String keyPrefix, ID id, Class<R> type, Function<ID, R> dbFallback, Long time, TimeUnit unit) {String key = keyPrefix + id;// 1.从redis查询商铺缓存String json = stringRedisTemplate.opsForValue().get(key);// 2.判断是否存在if (StrUtil.isBlank(json)) {// 3.存在,直接返回return null;}// 4.命中,需要先把json反序列化为对象RedisData redisData = JSONUtil.toBean(json, RedisData.class);R r = JSONUtil.toBean((JSONObject) redisData.getData(), type);LocalDateTime expireTime = redisData.getExpireTime();// 5.判断是否过期if(expireTime.isAfter(LocalDateTime.now())) {// 5.1.未过期,直接返回店铺信息return r;}// 5.2.已过期,需要缓存重建// 6.缓存重建// 6.1.获取互斥锁String lockKey = LOCK_SHOP_KEY + id;boolean isLock = tryLock(lockKey);// 6.2.判断是否获取锁成功if (isLock){// 6.3.成功,开启独立线程,实现缓存重建CACHE_REBUILD_EXECUTOR.submit(() -> {try {// 查询数据库R newR = dbFallback.apply(id);// 重建缓存this.setWithLogicalExpire(key, newR, time, unit);} catch (Exception e) {throw new RuntimeException(e);}finally {// 释放锁unlock(lockKey);}});}// 6.4.返回过期的商铺信息return r;}public <R, ID> R queryWithMutex(String keyPrefix, ID id, Class<R> type, Function<ID, R> dbFallback, Long time, TimeUnit unit) {String key = keyPrefix + id;// 1.从redis查询商铺缓存String shopJson = stringRedisTemplate.opsForValue().get(key);// 2.判断是否存在if (StrUtil.isNotBlank(shopJson)) {// 3.存在,直接返回return JSONUtil.toBean(shopJson, type);}// 判断命中的是否是空值if (shopJson != null) {// 返回一个错误信息return null;}// 4.实现缓存重建// 4.1.获取互斥锁String lockKey = LOCK_SHOP_KEY + id;R r = null;try {boolean isLock = tryLock(lockKey);// 4.2.判断是否获取成功if (!isLock) {// 4.3.获取锁失败,休眠并重试Thread.sleep(50);return queryWithMutex(keyPrefix, id, type, dbFallback, time, unit);}// 4.4.获取锁成功,根据id查询数据库r = dbFallback.apply(id);// 5.不存在,返回错误if (r == null) {// 将空值写入redisstringRedisTemplate.opsForValue().set(key, "", CACHE_NULL_TTL, TimeUnit.MINUTES);// 返回错误信息return null;}// 6.存在,写入redisthis.set(key, r, time, unit);} catch (InterruptedException e) {throw new RuntimeException(e);}finally {// 7.释放锁unlock(lockKey);}// 8.返回return r;}private boolean tryLock(String key) {Boolean flag = stringRedisTemplate.opsForValue().setIfAbsent(key, "1", 10, TimeUnit.SECONDS);return BooleanUtil.isTrue(flag);}private void unlock(String key) {stringRedisTemplate.delete(key);}
}

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/21195.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

力扣 416. 分割等和子集

题目来源&#xff1a;https://leetcode.cn/problems/partition-equal-subset-sum/description/ C题解&#xff08;思路来源代码随想录&#xff09; &#xff1a; 背包问题有多种背包方式&#xff0c;常见的有&#xff1a;01背包、完全背包、多重背包、分组背包和混合背包等等。…

Prometheus实现系统监控报警邮件

Prometheus实现系统监控报警邮件 简介 Prometheus将数据采集和报警分成了两个模块。报警规则配置在Prometheus Servers上&#xff0c; 然后发送报警信息到AlertManger&#xff0c;然后我们的AlertManager就来管理这些报警信息&#xff0c;聚合报警信息过后通过email、PagerDu…

linux多线程

文章目录 linux多线程1. 相关概念1.1 线程概念详解线程 VS 进程线程的优点线程的缺点线程异常线程用途 1.2 页表详解 2. 线程控制2.0 POSIX线程库深入理解线程库使用C多线程接口在Linux环境创建多线程 深入理解线程id线程局部存储 2.1 线程的创建 - pthread_create线程创建时参…

计算机毕设 深度学习疫情社交安全距离检测算法 - python opencv cnn

文章目录 0 前言1 课题背景2 实现效果3 相关技术3.1 YOLOV43.2 基于 DeepSort 算法的行人跟踪 4 最后 0 前言 &#x1f525; 这两年开始毕业设计和毕业答辩的要求和难度不断提升&#xff0c;传统的毕设题目缺少创新和亮点&#xff0c;往往达不到毕业答辩的要求&#xff0c;这两…

OC与Swift的相互调用

OC调用Swift方法 1、在 Build Settings 搜索 Packaging &#xff0c;设置 Defines Module 为 YES 2、新建 LottieBridge.swift 文件&#xff0c;自动生成桥 ProductName-Bridging-Header.h 3、在 LottieBridge.swift 中&#xff0c;定义Swift类继承于OC类&#xff0c;声明 obj…

Postgresql源码(109)并行框架实例与分析

1 PostgreSQL并行参数 系统参数 系统总worker限制&#xff1a;max_worker_processes 默认8 系统总并发限制&#xff1a;max_parallel_workers 默认8 单Query限制&#xff1a;max_parallel_workers_per_gather 默认2 表参数限制&#xff1a;parallel_workers alter table tbl …

什么样的跨网文件安全交换系统 可实现安全便捷的文件摆渡?

进入互联网时代&#xff0c;网络的运算和数据管理能力助力各个行业高速发展&#xff0c;但同样带来了一些网络安全隐患&#xff0c;网络攻击、数据窃取、敏感信息泄露等问题。为此&#xff0c;我国出台了系列政策来全面提升银各行业系统网络安全整体防护水平&#xff0c;其中“…

HTTPS-RSA握手

RSA握手过程 HTTPS采用了公钥加密和对称加密结合的方式进行数据加密和解密 RSA握手是HTTPS连接建立过程中的一个关键步骤&#xff0c;用于确保通信双方的身份验证和生成对称加密所需的密钥 通过RSA握手过程&#xff0c;客户端和服务器可以协商出一个共享的对称密钥&#xff0c;…

如何解决电脑无声问题:排除故障的几种常见方法

大家好&#xff0c;今天我们来讨论一下处理电脑没有声音的故障。当你突然发现电脑静音无声时&#xff0c;需要逐步排除可能的问题&#xff0c;但总体而言&#xff0c;声音故障是相对容易解决的。接下来&#xff0c;我们将介绍一些排除电脑无声问题的方法。 第一步&#xff1a;…

路由器工作原理(第二十九课)

路由器工作原理(第二十九课) 一图胜过千言 1) 路由:数据从一个网络到另外一个网络之间转发数据包的过程称为路由 2) 路由器:连接不同网络,实现不同网段之间的通信 3)路由表:路由器选择数据的传输路径的依据 原始的路由表 Destination/Mask Proto Pre Cost …

prometheus监控k8s kube-proxy target down

prometheus kube-proxy target down 解决 修改配置 kubectl edit cm/kube-proxy -n kube-systemmetricsBindAddress: "0.0.0.0:10249"删除 kube-proxy pod 使之重启应用配置 kubectl delete pod --force `kubectl get pod -n kube-system |grep kube-proxy|awk {pr…

使用pg_prewarm缓存PostgreSQL数据库表

pg_prewarm pg_prewarm 直接利用系统缓存的代码,对操作系统发出异步prefetch请求&#xff0c;在应用中&#xff0c;尤其在OLAP的情况下&#xff0c;对于大表的分析等等是非常耗费查询的时间的&#xff0c;而即使我们使用select table的方式&#xff0c;这张表也并不可能将所有…

InfluxDB2如何求增量数据

需求 项目中需要接入电表设备&#xff0c;求用电量。 按天和设备统计用电量 按天统计用电量 统计总用电量 存在的问题 difference 函数可以求增量&#xff0c;但是以上计算均存在一个问题&#xff0c;比如xx设备有8.1号和8.2号的数据&#xff0c;我统计每天的用电量&#xf…

Consul实战

Consul实战 什么是Consul Consul是一种为分布式系统提供服务发现、配置共享和健康检查的开源工具&#xff1b; 可以用来做微服务架构里的注册中心和配置中心。Consul的特定和功能有&#xff1a; 1.服务发现 consul允许微服务注册自己的实例到Consul, 并查询consul来获取可用的…

Three.js给场景添加背景颜色,背景图,全景图

1.相关API的使用&#xff1a; 1 THREE.Color &#xff08;用于创建和表示颜色&#xff09; 2. THREE.TextureLoader&#xff08;用于加载和处理图片纹理&#xff09; 3. THREE.SphereGeometry&#xff08;用于创建一个球体的几何体&#xff09; 4. THREE.Mesh&#xff08;用…

MySQL索引特性

目录 一、索引 二、MySQL 与磁盘交互基本单位 三、索引的理解 一、索引 为什么要有索引&#xff1f; 首先我们插入一个8000000条记录的数据&#xff0c;再来查询数据&#xff0c;看看没有索引的情况下&#xff0c;会耗费多长时间。 当执行完这几条命令时&#xff0c;我们会发…

获取全部的地区并生成表格

思路 写文章的时间2023-8-4&#xff0c;大部分网页设置的区域都是先是省&#xff0c;然后通过省获取对应的市&#xff0c;再通过市获取对应的区&#xff0c;以此类推。所以模拟的请求也是按照这个逻辑&#xff0c;先获取所有的省&#xff0c;再获取所有的市&#xff0c;最后获取…

PyTorch 中的累积梯度

https://stackoverflow.com/questions/62067400/understanding-accumulated-gradients-in-pytorch 有一个小的计算图&#xff0c;两次前向梯度累积的结果&#xff0c;可以看到梯度是严格相等的。 代码&#xff1a; import numpy as np import torchclass ExampleLinear(torch…

C语言每日一题:13《数据结构》环形链表。

题目链接&#xff1a; 一.环形链表运动基础。 使用快慢指针利用相对移动的思想&#xff1a; 1.第一种情况&#xff1a; 1,令快指针&#xff08;fast&#xff09;速度为2. 2.慢指针&#xff08;slow&#xff09;速度为1. 3.以慢指针进入环中开始。 4。假设slow刚刚进入环中fast…