计算机毕设 深度学习疫情社交安全距离检测算法 - python opencv cnn

文章目录

  • 0 前言
  • 1 课题背景
  • 2 实现效果
  • 3 相关技术
    • 3.1 YOLOV4
    • 3.2 基于 DeepSort 算法的行人跟踪
  • 4 最后


0 前言

🔥 这两年开始毕业设计和毕业答辩的要求和难度不断提升,传统的毕设题目缺少创新和亮点,往往达不到毕业答辩的要求,这两年不断有学弟学妹告诉学长自己做的项目系统达不到老师的要求。

为了大家能够顺利以及最少的精力通过毕设,学长分享优质毕业设计项目,今天要分享的是

🚩 **基于深度学习疫情社交安全距离检测算法 **

🥇学长这里给一个题目综合评分(每项满分5分)

  • 难度系数:3分
  • 工作量:3分
  • 创新点:5分

1 课题背景

安全的社交距离是公共预防传染病毒的途径之一。所以,在人群密集的区域进行社交距离的安全评估是十分重要的。社交距离的测量旨在保持个体之间的物理距离和减少相互接触的人群来减缓或阻止病毒传播,在抗击病毒和预防大流感中发挥重要作用。但时刻保持安全距离具有一定的难度,特别是在校园,工厂等场所,在这种情况下,开发智能摄像头等技术尤为关键。将人工智能,深度学习集成至安全摄像头对行人进行社交距离评估。现阶段针对疫情防范的要求,主要采用人工干预和计算机处理技术。人工干预存在人力资源要求高,风险大,时间成本高等等缺点。计算机处理等人工智能技术的发展,对社交安全距离的安全评估具有良好的效果。

2 实现效果

通过距离分类人群的高危险和低危险距离。

在这里插入图片描述
相关代码

import argparse
from utils.datasets import *
from utils.utils import *def detect(save_img=False):out, source, weights, view_img, save_txt, imgsz = \opt.output, opt.source, opt.weights, opt.view_img, opt.save_txt, opt.img_sizewebcam = source == '0' or source.startswith('rtsp') or source.startswith('http') or source.endswith('.txt')# Initializedevice = torch_utils.select_device(opt.device)if os.path.exists(out):shutil.rmtree(out)  # delete output folderos.makedirs(out)  # make new output folderhalf = device.type != 'cpu'  # half precision only supported on CUDA# Load modelgoogle_utils.attempt_download(weights)model = torch.load(weights, map_location=device)['model'].float()  # load to FP32# torch.save(torch.load(weights, map_location=device), weights)  # update model if SourceChangeWarning# model.fuse()model.to(device).eval()if half:model.half()  # to FP16# Second-stage classifierclassify = Falseif classify:modelc = torch_utils.load_classifier(name='resnet101', n=2)  # initializemodelc.load_state_dict(torch.load('weights/resnet101.pt', map_location=device)['model'])  # load weightsmodelc.to(device).eval()# Set Dataloadervid_path, vid_writer = None, Noneif webcam:view_img = Truetorch.backends.cudnn.benchmark = True  # set True to speed up constant image size inferencedataset = LoadStreams(source, img_size=imgsz)else:save_img = Truedataset = LoadImages(source, img_size=imgsz)# Get names and colorsnames = model.names if hasattr(model, 'names') else model.modules.namescolors = [[random.randint(0, 255) for _ in range(3)] for _ in range(len(names))]# Run inferencet0 = time.time()img = torch.zeros((1, 3, imgsz, imgsz), device=device)  # init img_ = model(img.half() if half else img) if device.type != 'cpu' else None  # run oncefor path, img, im0s, vid_cap in dataset:img = torch.from_numpy(img).to(device)img = img.half() if half else img.float()  # uint8 to fp16/32img /= 255.0  # 0 - 255 to 0.0 - 1.0if img.ndimension() == 3:img = img.unsqueeze(0)# Inferencet1 = torch_utils.time_synchronized()pred = model(img, augment=opt.augment)[0]# Apply NMSpred = non_max_suppression(pred, opt.conf_thres, opt.iou_thres,fast=True, classes=opt.classes, agnostic=opt.agnostic_nms)t2 = torch_utils.time_synchronized()# Apply Classifierif classify:pred = apply_classifier(pred, modelc, img, im0s)# List to store bounding coordinates of peoplepeople_coords = []# Process detectionsfor i, det in enumerate(pred):  # detections per imageif webcam:  # batch_size >= 1p, s, im0 = path[i], '%g: ' % i, im0s[i].copy()else:p, s, im0 = path, '', im0ssave_path = str(Path(out) / Path(p).name)s += '%gx%g ' % img.shape[2:]  # print stringgn = torch.tensor(im0.shape)[[1, 0, 1, 0]]  #  normalization gain whwhif det is not None and len(det):# Rescale boxes from img_size to im0 sizedet[:, :4] = scale_coords(img.shape[2:], det[:, :4], im0.shape).round()# Print resultsfor c in det[:, -1].unique():n = (det[:, -1] == c).sum()  # detections per classs += '%g %ss, ' % (n, names[int(c)])  # add to string# Write resultsfor *xyxy, conf, cls in det:if save_txt:  # Write to filexywh = (xyxy2xywh(torch.tensor(xyxy).view(1, 4)) / gn).view(-1).tolist()  # normalized xywhwith open(save_path[:save_path.rfind('.')] + '.txt', 'a') as file:file.write(('%g ' * 5 + '\n') % (cls, *xywh))  # label formatif save_img or view_img:  # Add bbox to imagelabel = '%s %.2f' % (names[int(cls)], conf)if label is not None:if (label.split())[0] == 'person':people_coords.append(xyxy)# plot_one_box(xyxy, im0, line_thickness=3)plot_dots_on_people(xyxy, im0)# Plot lines connecting peopledistancing(people_coords, im0, dist_thres_lim=(200,250))# Print time (inference + NMS)print('%sDone. (%.3fs)' % (s, t2 - t1))# Stream resultsif view_img:cv2.imshow(p, im0)if cv2.waitKey(1) == ord('q'):  # q to quitraise StopIteration# Save results (image with detections)if save_img:if dataset.mode == 'images':cv2.imwrite(save_path, im0)else:if vid_path != save_path:  # new videovid_path = save_pathif isinstance(vid_writer, cv2.VideoWriter):vid_writer.release()  # release previous video writerfps = vid_cap.get(cv2.CAP_PROP_FPS)w = int(vid_cap.get(cv2.CAP_PROP_FRAME_WIDTH))h = int(vid_cap.get(cv2.CAP_PROP_FRAME_HEIGHT))vid_writer = cv2.VideoWriter(save_path, cv2.VideoWriter_fourcc(*opt.fourcc), fps, (w, h))vid_writer.write(im0)if save_txt or save_img:print('Results saved to %s' % os.getcwd() + os.sep + out)if platform == 'darwin':  # MacOSos.system('open ' + save_path)print('Done. (%.3fs)' % (time.time() - t0))

3 相关技术

3.1 YOLOV4

YOLOv4使用卷积网络 CSPDarknet-53 特征提取,网络结构模型如图 2 所示。在每个 Darknet-53的残块行加上 CSP(Cross Stage Partial)结构13,将基础层划分为两部分,再通过跨层次结构的特征融合进行合并。并采用 FPN( feature pyramid networks)结构加强特征金字塔,最后用不同层的特征的高分辨率来提取不同尺度特征图进行对象检测。最终网络输出 3 个不同尺度的特征图,在三个不同尺度特征图上分别使用 3 个不同的先验框(anchors)进行预测识别,使得远近大小目标均能得到较好的检测。
在这里插入图片描述
YOLOv4 的先验框尺寸是经PASCALL_VOC,COCO 数据集包含的种类复杂而生成的,并不一定完全适合行人。本研究旨在研究行人之间的社交距离,针对行人目标检测,利用聚类算法对 YOLOv4 的先验框微调,首先将行人数据集F依据相似性分为i个对象,即在这里插入图片描述,其中每个对象都具有 m 个维度的属性。聚类算法的目的是 i 个对象依据相似性聚集到指定的 j 个类簇,每个对象属于且仅属于一个其到类簇中心距离最小的类簇中心。初始化 j 个 聚 类 中 心C c c c   1 2 , ,..., j,计算每一个对象到每一个聚类中心的欧式距离,见公式
在这里插入图片描述
之后,依次比较每个对象到每个聚类中心的距离,将对象分配至距离最近的簇类中心的类簇中,
得到 在这里插入图片描述个类簇S s s s  1 2 , ,..., l,聚类算法中定义了类簇的原型,类簇中心就是类簇内所有对象在各个维度的均值,其公式见
在这里插入图片描述
相关代码

def check_anchors(dataset, model, thr=4.0, imgsz=640):# Check anchor fit to data, recompute if necessaryprint('\nAnalyzing anchors... ', end='')m = model.module.model[-1] if hasattr(model, 'module') else model.model[-1]  # Detect()shapes = imgsz * dataset.shapes / dataset.shapes.max(1, keepdims=True)wh = torch.tensor(np.concatenate([l[:, 3:5] * s for s, l in zip(shapes, dataset.labels)])).float()  # whdef metric(k):  # compute metricr = wh[:, None] / k[None]x = torch.min(r, 1. / r).min(2)[0]  # ratio metricbest = x.max(1)[0]  # best_xreturn (best > 1. / thr).float().mean()  #  best possible recallbpr = metric(m.anchor_grid.clone().cpu().view(-1, 2))print('Best Possible Recall (BPR) = %.4f' % bpr, end='')if bpr < 0.99:  # threshold to recomputeprint('. Attempting to generate improved anchors, please wait...' % bpr)na = m.anchor_grid.numel() // 2  # number of anchorsnew_anchors = kmean_anchors(dataset, n=na, img_size=imgsz, thr=thr, gen=1000, verbose=False)new_bpr = metric(new_anchors.reshape(-1, 2))if new_bpr > bpr:  # replace anchorsnew_anchors = torch.tensor(new_anchors, device=m.anchors.device).type_as(m.anchors)m.anchor_grid[:] = new_anchors.clone().view_as(m.anchor_grid)  # for inferencem.anchors[:] = new_anchors.clone().view_as(m.anchors) / m.stride.to(m.anchors.device).view(-1, 1, 1)  # lossprint('New anchors saved to model. Update model *.yaml to use these anchors in the future.')else:print('Original anchors better than new anchors. Proceeding with original anchors.')print('')  # newline

3.2 基于 DeepSort 算法的行人跟踪

YOLOv4中完成行人目标检测后生成边界框(Bounding box,Bbox),Bbox 含有包含最小化行人边框矩形的坐标信息,本研究引入 DeepSort 算法[18]完成对行人的质点进行跟踪,目的是为了在运动矢量分析时算行人安全社交距离中。首先,对行人进行质点化计算。其质点计算公式如
在这里插入图片描述
确定行人质点后,利用 DeepSort 算法实现对多个目标的精确定位与跟踪,其核心算法流程如图所示:
在这里插入图片描述
相关代码

class TrackState:'''单个轨迹的三种状态'''Tentative = 1 #不确定态Confirmed = 2 #确定态Deleted = 3 #删除态class Track:def __init__(self, mean, covariance, track_id, class_id, conf, n_init, max_age,feature=None):'''mean:位置、速度状态分布均值向量,维度(8×1)convariance:位置、速度状态分布方差矩阵,维度(8×8)track_id:轨迹IDclass_id:轨迹所属类别hits:轨迹更新次数(初始化为1),即轨迹与目标连续匹配成功次数age:轨迹连续存在的帧数(初始化为1),即轨迹出现到被删除的连续总帧数time_since_update:轨迹距离上次更新后的连续帧数(初始化为0),即轨迹与目标连续匹配失败次数state:轨迹状态features:轨迹所属目标的外观语义特征,轨迹匹配成功时添加当前帧的新外观语义特征conf:轨迹所属目标的置信度得分_n_init:轨迹状态由不确定态到确定态所需连续匹配成功的次数_max_age:轨迹状态由不确定态到删除态所需连续匹配失败的次数'''   self.mean = meanself.covariance = covarianceself.track_id = track_idself.class_id = int(class_id)self.hits = 1self.age = 1self.time_since_update = 0self.state = TrackState.Tentativeself.features = []if feature is not None:self.features.append(feature) #若不为None,初始化外观语义特征self.conf = confself._n_init = n_initself._max_age = max_agedef increment_age(self):'''预测下一帧轨迹时调用'''self.age += 1 #轨迹连续存在帧数+1self.time_since_update += 1 #轨迹连续匹配失败次数+1def predict(self, kf):'''预测下一帧轨迹信息'''self.mean, self.covariance = kf.predict(self.mean, self.covariance) #卡尔曼滤波预测下一帧轨迹的状态均值和方差self.increment_age() #调用函数,age+1,time_since_update+1def update(self, kf, detection, class_id, conf):'''更新匹配成功的轨迹信息'''self.conf = conf #更新置信度得分self.mean, self.covariance = kf.update(self.mean, self.covariance, detection.to_xyah()) #卡尔曼滤波更新轨迹的状态均值和方差self.features.append(detection.feature) #添加轨迹对应目标框的外观语义特征self.class_id = class_id.int() #更新轨迹所属类别self.hits += 1 #轨迹匹配成功次数+1self.time_since_update = 0 #匹配成功时,轨迹连续匹配失败次数归0if self.state == TrackState.Tentative and self.hits >= self._n_init:self.state = TrackState.Confirmed #当连续匹配成功次数达标时轨迹由不确定态转为确定态def mark_missed(self):'''将轨迹状态转为删除态'''if self.state == TrackState.Tentative:self.state = TrackState.Deleted #当级联匹配和IOU匹配后仍为不确定态elif self.time_since_update > self._max_age:self.state = TrackState.Deleted #当连续匹配失败次数超标'''该部分还存在一些轨迹坐标转化及状态判定函数,具体可参考代码来源'''

4 最后

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/21190.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

OC与Swift的相互调用

OC调用Swift方法 1、在 Build Settings 搜索 Packaging &#xff0c;设置 Defines Module 为 YES 2、新建 LottieBridge.swift 文件&#xff0c;自动生成桥 ProductName-Bridging-Header.h 3、在 LottieBridge.swift 中&#xff0c;定义Swift类继承于OC类&#xff0c;声明 obj…

Postgresql源码(109)并行框架实例与分析

1 PostgreSQL并行参数 系统参数 系统总worker限制&#xff1a;max_worker_processes 默认8 系统总并发限制&#xff1a;max_parallel_workers 默认8 单Query限制&#xff1a;max_parallel_workers_per_gather 默认2 表参数限制&#xff1a;parallel_workers alter table tbl …

什么样的跨网文件安全交换系统 可实现安全便捷的文件摆渡?

进入互联网时代&#xff0c;网络的运算和数据管理能力助力各个行业高速发展&#xff0c;但同样带来了一些网络安全隐患&#xff0c;网络攻击、数据窃取、敏感信息泄露等问题。为此&#xff0c;我国出台了系列政策来全面提升银各行业系统网络安全整体防护水平&#xff0c;其中“…

HTTPS-RSA握手

RSA握手过程 HTTPS采用了公钥加密和对称加密结合的方式进行数据加密和解密 RSA握手是HTTPS连接建立过程中的一个关键步骤&#xff0c;用于确保通信双方的身份验证和生成对称加密所需的密钥 通过RSA握手过程&#xff0c;客户端和服务器可以协商出一个共享的对称密钥&#xff0c;…

如何解决电脑无声问题:排除故障的几种常见方法

大家好&#xff0c;今天我们来讨论一下处理电脑没有声音的故障。当你突然发现电脑静音无声时&#xff0c;需要逐步排除可能的问题&#xff0c;但总体而言&#xff0c;声音故障是相对容易解决的。接下来&#xff0c;我们将介绍一些排除电脑无声问题的方法。 第一步&#xff1a;…

路由器工作原理(第二十九课)

路由器工作原理(第二十九课) 一图胜过千言 1) 路由:数据从一个网络到另外一个网络之间转发数据包的过程称为路由 2) 路由器:连接不同网络,实现不同网段之间的通信 3)路由表:路由器选择数据的传输路径的依据 原始的路由表 Destination/Mask Proto Pre Cost …

prometheus监控k8s kube-proxy target down

prometheus kube-proxy target down 解决 修改配置 kubectl edit cm/kube-proxy -n kube-systemmetricsBindAddress: "0.0.0.0:10249"删除 kube-proxy pod 使之重启应用配置 kubectl delete pod --force `kubectl get pod -n kube-system |grep kube-proxy|awk {pr…

使用pg_prewarm缓存PostgreSQL数据库表

pg_prewarm pg_prewarm 直接利用系统缓存的代码,对操作系统发出异步prefetch请求&#xff0c;在应用中&#xff0c;尤其在OLAP的情况下&#xff0c;对于大表的分析等等是非常耗费查询的时间的&#xff0c;而即使我们使用select table的方式&#xff0c;这张表也并不可能将所有…

InfluxDB2如何求增量数据

需求 项目中需要接入电表设备&#xff0c;求用电量。 按天和设备统计用电量 按天统计用电量 统计总用电量 存在的问题 difference 函数可以求增量&#xff0c;但是以上计算均存在一个问题&#xff0c;比如xx设备有8.1号和8.2号的数据&#xff0c;我统计每天的用电量&#xf…

Consul实战

Consul实战 什么是Consul Consul是一种为分布式系统提供服务发现、配置共享和健康检查的开源工具&#xff1b; 可以用来做微服务架构里的注册中心和配置中心。Consul的特定和功能有&#xff1a; 1.服务发现 consul允许微服务注册自己的实例到Consul, 并查询consul来获取可用的…

Three.js给场景添加背景颜色,背景图,全景图

1.相关API的使用&#xff1a; 1 THREE.Color &#xff08;用于创建和表示颜色&#xff09; 2. THREE.TextureLoader&#xff08;用于加载和处理图片纹理&#xff09; 3. THREE.SphereGeometry&#xff08;用于创建一个球体的几何体&#xff09; 4. THREE.Mesh&#xff08;用…

MySQL索引特性

目录 一、索引 二、MySQL 与磁盘交互基本单位 三、索引的理解 一、索引 为什么要有索引&#xff1f; 首先我们插入一个8000000条记录的数据&#xff0c;再来查询数据&#xff0c;看看没有索引的情况下&#xff0c;会耗费多长时间。 当执行完这几条命令时&#xff0c;我们会发…

获取全部的地区并生成表格

思路 写文章的时间2023-8-4&#xff0c;大部分网页设置的区域都是先是省&#xff0c;然后通过省获取对应的市&#xff0c;再通过市获取对应的区&#xff0c;以此类推。所以模拟的请求也是按照这个逻辑&#xff0c;先获取所有的省&#xff0c;再获取所有的市&#xff0c;最后获取…

PyTorch 中的累积梯度

https://stackoverflow.com/questions/62067400/understanding-accumulated-gradients-in-pytorch 有一个小的计算图&#xff0c;两次前向梯度累积的结果&#xff0c;可以看到梯度是严格相等的。 代码&#xff1a; import numpy as np import torchclass ExampleLinear(torch…

C语言每日一题:13《数据结构》环形链表。

题目链接&#xff1a; 一.环形链表运动基础。 使用快慢指针利用相对移动的思想&#xff1a; 1.第一种情况&#xff1a; 1,令快指针&#xff08;fast&#xff09;速度为2. 2.慢指针&#xff08;slow&#xff09;速度为1. 3.以慢指针进入环中开始。 4。假设slow刚刚进入环中fast…

【夜深人静学习数据结构与算法 | 第十二篇】动态规划——背包问题

目录 前言&#xff1a; 01背包问题&#xff1a; 二维数组思路&#xff1a; 一维数组思路&#xff1a; 总结&#xff1a; 前言&#xff1a; 在前面我们学习动态规划理论知识的时候&#xff0c;我就讲过要介绍一下背包问题&#xff0c;那么今天我们就来讲解一下背包问题。 在这…

NetApp 入门级全闪存系统 AFF A250:小巧而强大

NetApp 入门级全闪存系统 AFF A250&#xff1a;小巧而强大 作为 AFF A 系列中的入门级全闪存系统&#xff0c;AFF A250 不但可以简化数据管理&#xff0c;还能为您的所有工作负载提供令人惊叹的强劲动力&#xff0c;价格也平易近人。 AFF A250&#xff1a;您的新 IT 专家 AFF…

工厂方法模式(Factory Method)

工厂方法模式就是定义一个用于创建对象的接口&#xff0c;让子类决定实例化哪一个类。工厂方法模式将类的实例化&#xff08;具体产品的创建&#xff09;延迟到工厂类的子类&#xff08;具体工厂&#xff09;中完成&#xff0c;即由子工厂类来决定该实例化哪一个类。 Define a…

Knife4j系列--解决不显示文件上传的问题

原文网址&#xff1a;Knife4j系列--解决不显示文件上传的问题_IT利刃出鞘的博客-CSDN博客 简介 本文介绍使用Knife4j时无法上传文件的问题。 问题复现 依赖 <dependency><groupId>com.github.xiaoymin</groupId><artifactId>knife4j-spring-boot-…