【基于大数据的人肥胖程度预测分析与可控策略】

基于大数据的人肥胖程度预测分析与可控策略

    • 前言
    • 数据获取与清洗
    • 数据挖掘与分类建模
      • 1. K-means聚类
      • 2. 层次聚类
      • 3. DBSCAN
      • 4. 分类建模
    • 数据可视化模型
    • 肥胖程度预测分析与可控策略
    • 结语

前言

随着现代生活方式的改变,肥胖问题逐渐成为全球性的健康挑战。为了更好地理解和应对肥胖问题,本文将介绍如何使用来自UCI机器学习存储库的墨西哥、秘鲁和哥伦比亚人的肥胖数据,利用K-means聚类、层次聚类、DBSCAN和三种常见的分类模型(Logistic回归、决策树模型、随机森林模型),以及数据可视化技术,来预测人的肥胖程度并提供合理的可控策略。
在这里插入图片描述

数据获取与清洗

首先,我们需要从互联网资源中获取肥胖相关数据,这些数据通常包括个人的生活方式、饮食习惯、健康状况等信息。一旦获取到数据,就需要进行清洗,包括处理缺失值、异常值和重复值,以确保数据的质量和可用性。

数据挖掘与分类建模

1. K-means聚类

K-means聚类可以帮助我们将样本分成不同的群组,以发现潜在的肥胖模式。通过对数据进行聚类,我们可以识别具有相似特征的个体,并推测他们的肥胖程度。

2. 层次聚类

层次聚类是一种将样本层次化组织的方法,可以帮助我们理解不同群组之间的层次关系。这有助于更深入地分析肥胖问题,并为制定可控策略提供更多见解。

3. DBSCAN

DBSCAN是一种基于密度的聚类算法,适用于识别具有不同密度的数据点。通过DBSCAN,我们可以发现少数群体中可能存在的肥胖问题,这对于定向干预和控制策略至关重要。

4. 分类建模

使用Logistic回归、决策树模型和随机森林模型,我们可以建立分类模型来预测个体的肥胖程度。这些模型将根据个体的特征进行分类,并提供潜在的预测结果。

数据可视化模型

通过数据可视化技术,我们可以将分析结果以可视化的方式呈现,例如绘制聚类结果的散点图、绘制决策树结构图、绘制随机森林的特征重要性图等。这有助于更好地理解数据,并向相关决策者传达分析结果。

肥胖程度预测分析与可控策略

最后,基于建立的分类模型和分析结果,我们可以进行肥胖程度的预测分析。通过输入个体的特征,模型将预测其肥胖程度,并为相关个体提供合理的可控策略。这些策略可以包括饮食建议、运动计划、生活方式改变等,以帮助个体控制肥胖问题。

结语

本文介绍了如何基于大数据进行肥胖程度的预测分析与可控策略制定。通过数据获取、清洗、挖掘、分类建模和可视化技术,我们可以更好地理解和应对肥胖问题,为个体提供有效的健康管理建议。这一方法可以在公共卫生领域和医疗健康管理中发挥重要作用,有助于改善人们的生活质量和健康状况。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/211505.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

实用篇 | 3D建模中Blender软件的下载及使用[图文详情]

本文基于数字人系列的3D建模工具Blender软件的安装及使用,还介绍了图片生成3D模型的AI工具~ 目录 1.Blender的下载 2.Blender的使用 3.安装插件(通过压缩包安装) 4.实例 4.1.Blender使用MB-Lab插件快速人体模型建构 4.1.1.点击官网,进行下载 4.1.…

Java TCP(一对一)聊天简易版

客户端 import java.io.*; import java.net.Socket; import java.util.Date; import javax.swing.*;public class MyClient {private JFrame jf;private JButton jBsend;private JTextArea jTAcontent;private JTextField jText;private JLabel JLcontent;private Date data;p…

C语言 题目

1.写一个函数算一个数的二进制(补码)表示中有几个1 #include<stdio.h>//统计二进制数中有几个1 //如13:1101 //需要考虑负数情况 如-1 结果应该是32// n 1101 //n-1 1100 //n 1100 //n-1 1011 //n 1000 //n-1 0111 //n 0000 //看n的变化 int funca(int c){int co…

css:flex布局中子元素高度height没有达到100%

目录 问题flex布局示例解决办法方式一方式二 参考 问题 css中使用flex布局中子元素高度height没有达到100% flex布局示例 希望实现两个盒子左右分布&#xff0c;内容垂直居中对齐 <style>.box {display: flex;align-items: center;border: 1px solid #eeeeee;}.box-l…

react新旧生命周期钩子

以下的内容根据尚硅谷整理。 旧生命钩子 辅助理解&#xff1a; 红色框&#xff1a;挂载时生命钩子蓝色框&#xff1a;更新时生命钩子绿色框&#xff1a;卸载时生命钩子 挂载时 如图所示&#xff0c;我们可以看到&#xff0c;在组件第一次挂载时会经历&#xff1a; 构造器&a…

stateflow——如何查看状态机中参数变化及状态机断点调试

法一&#xff1a;使用Data Inspector 点击“符号图窗”和“属性”&#xff0c;如图&#xff1b;在选择变量n并右键点击inspector&#xff0c;最后在logging&#xff0c;如图 法二&#xff1a;log active state 和法一类似使用data inspector查看&#xff0c;类似的查看方法和…

【每周一测】Java阶段四第三周学习

目录 1、关于分布式锁的说法&#xff0c;错误的是&#xff08; &#xff09; 2、JDK动态代理产生的代理类和委托类的关系是 3、下列关于ElasticSearch中基本概念描述错误的是 4、Spring Cloud 中&#xff0c;Feign 是什么&#xff1f; 5、在JavaScript中&#xff0c;可以使…

玩转大数据13: 数据伦理与合规性探讨

1. 引言 随着科技的飞速发展&#xff0c;数据已经成为了现代社会的宝贵资产。然而&#xff0c;数据的收集、处理和利用也带来了一系列的伦理和合规性问题。数据伦理和合规性不仅关乎个人隐私和权益的保护&#xff0c;还涉及到企业的商业利益和社会责任。因此&#xff0c;数据…

韵达快递单号查询,以表格的形式导出单号的每一条物流信息

批量查询韵达快递单号的物流信息&#xff0c;并以表格的形式导出单号的每一条物流信息。 所需工具&#xff1a; 一个【快递批量查询高手】软件 韵达快递单号若干 操作步骤&#xff1a; 步骤1&#xff1a;运行【快递批量查询高手】软件&#xff0c;第一次使用的伙伴记得先注册…

SOP(标准作业程序)和WI(操作指导书)的联系和区别

目录 1.SOP&#xff08;标准作业程序&#xff09;&#xff1a;2.WI&#xff08;操作指导书&#xff09;&#xff1a;3.SOP和WI的区别&#xff1a; 1.SOP&#xff08;标准作业程序&#xff09;&#xff1a; SOP: 所谓SOP&#xff0c;是 Standard Operation Procedure三个单词中…

【计算机网络实验】实验三 IP网络规划与路由设计(头歌)

目录 一、知识点 二、实验任务 三、头歌测试 一、知识点 IP子网掩码的两种表示方法 32位IP子网掩码&#xff0c;特点是从高位开始连续都是1&#xff0c;后面是连续的0&#xff0c;它有以下两种表示方法&#xff1a; 传统表示法&#xff0c;如&#xff1a;255.255.255.0IP前…

【WebSocket】使用ws搭建一个简单的在线聊天室

前言 什么是WebSockets&#xff1f; WebSockets 是一种先进的技术。它可以在用户的浏览器和服务器之间打开交互式通信会话。使用此 API&#xff0c;你可以向服务器发送消息并接收事件驱动的响应&#xff0c;而无需通过轮询服务器的方式以获得响应。 webscokets 包括webscoket…

中科院分区和JCR分区有什么区别

文章目录 名词解释学科划分不同参考的影响因子不同期刊分区不同期刊分区阈值不同 名词解释 中科院分区&#xff1a;又称“中科院JCR分区”&#xff0c;是中国科学院文献情报中心世界科学前沿分析中心的科学研究成果&#xff0c;期刊分区表数据每年底&#xff08;每年12月中下旬…

Python爬虫-实现批量抓取王者荣耀皮肤图片并保存到本地

前言 本文是该专栏的第12篇,后面会持续分享python爬虫案例干货,记得关注。 本文以王者荣耀的英雄皮肤为例,用python实现批量抓取“全部英雄”的皮肤图片,并将图片“批量保存”到本地。具体实现思路和详细逻辑,笔者将在正文结合完整代码进行详细介绍。注意,这里抓取的图片…

数据结构和算法-单链表

数据结构和算法-单链表 1. 链表介绍 链表是有序的列表&#xff0c;但是它在内存中是存储如下 图1 单链表示意图 小结: 链表是以节点的方式存储每个节点包含data域&#xff0c;next域&#xff0c;指向下一个节点。如图&#xff1a;发现链表的各个节点不一定是连续存储。比如地…

滑动窗口练习(三)— 加油站问题

题目 测试链接 在一条环路上有 n 个加油站&#xff0c;其中第 i 个加油站有汽油 gas[i] 升。 你有一辆油箱容量无限的的汽车&#xff0c;从第 i 个加油站开往第 i1 个加油站需要消耗汽油 cost[i] 升。你从其中的一个加油站出发&#xff0c;开始时油箱为空。 给定两个整数数组…

浮点数在计算机中如何存储

举例&#xff1a; 结果&#xff1a; 文字描述&#xff1a; 先将浮点数转化为二进制的表示形式&#xff0c; 接着将其二进制的形式按照科学计数法来表示&#xff0c; 符号位的确定&#xff1a;正数0&#xff0c; 负数1 指数的确定&#xff1a;将其二进制表示成为科学计数法…

Fall in love with English

Fall in love with English 爱上英语 Hiding behind the loose dusty curtain, a teenager packed up his overcoat into the suitcase. 躲藏在布满尘土的松软的窗帘后边&#xff0c;一个年轻人打包他的外套到行李箱中。 He planned to leave home at dusk though there was th…

超完整的mysql安装配置方法(包含idea和navicat连接mysql,并实现建表)

mysql安装配置方法 1、下载mysql2、解压到指定的安装目录3、配置初始化文件my.ini4、配置用户变量和系统变量5、初始化mysql6、安装mysql服务并启动修改密码7、使用idea连接mysql8、使用Navicat可视化工具连接mysql&#xff0c;并实现新建数据库&#xff0c;新建表 1、下载mysq…

计算机考研408-计算机网络、操作系统整书知识点脑图

计算机网络、操作系统整书知识点脑图 今天突然想起来考研期间为了方便记忆&#xff0c;费了很大力气整理了计算机网络、操作系统两本书知识点的脑图&#xff0c;想着放着也没啥用&#xff0c;分享出来给大家看看 但是思维导图格式的东西好像没法直接发成文章&#xff0c;上传…