【flink番外篇】1、flink的23种常用算子介绍及详细示例(3)-window、distinct、join等

Flink 系列文章

一、Flink 专栏

Flink 专栏系统介绍某一知识点,并辅以具体的示例进行说明。

  • 1、Flink 部署系列
    本部分介绍Flink的部署、配置相关基础内容。

  • 2、Flink基础系列
    本部分介绍Flink 的基础部分,比如术语、架构、编程模型、编程指南、基本的datastream api用法、四大基石等内容。

  • 3、Flik Table API和SQL基础系列
    本部分介绍Flink Table Api和SQL的基本用法,比如Table API和SQL创建库、表用法、查询、窗口函数、catalog等等内容。

  • 4、Flik Table API和SQL提高与应用系列
    本部分是table api 和sql的应用部分,和实际的生产应用联系更为密切,以及有一定开发难度的内容。

  • 5、Flink 监控系列
    本部分和实际的运维、监控工作相关。

二、Flink 示例专栏

Flink 示例专栏是 Flink 专栏的辅助说明,一般不会介绍知识点的信息,更多的是提供一个一个可以具体使用的示例。本专栏不再分目录,通过链接即可看出介绍的内容。

两专栏的所有文章入口点击:Flink 系列文章汇总索引


文章目录

  • Flink 系列文章
  • 一、Flink的23种算子说明及示例
    • 9、first、distinct、join、outjoin、cross
    • 10、Window
    • 11、WindowAll
    • 12、Window Apply
    • 13、Window Reduce
    • 14、Aggregations on windows


本文主要介绍Flink 的10种常用的operator(window、distinct、join等)及以具体可运行示例进行说明.
如果需要了解更多内容,可以在本人Flink 专栏中了解更新系统的内容。
本文除了maven依赖外,没有其他依赖。

本专题分为五篇,即:
【flink番外篇】1、flink的23种常用算子介绍及详细示例(1)- map、flatmap和filter
【flink番外篇】1、flink的23种常用算子介绍及详细示例(2)- keyby、reduce和Aggregations
【flink番外篇】1、flink的23种常用算子介绍及详细示例(3)-window、distinct、join等
【flink番外篇】1、flink的23种常用算子介绍及详细示例(4)- union、window join、connect、outputtag、cache、iterator、project
【flink番外篇】1、flink的23种常用算子介绍及详细示例(完整版)

一、Flink的23种算子说明及示例

本文示例中使用的maven依赖和java bean 参考本专题的第一篇中的maven和java bean。

9、first、distinct、join、outjoin、cross

具体事例详见例子及结果。

import java.util.ArrayList;
import java.util.Arrays;
import java.util.List;import org.apache.flink.api.common.functions.FlatMapFunction;
import org.apache.flink.api.common.functions.JoinFunction;
import org.apache.flink.api.common.operators.Order;
import org.apache.flink.api.java.DataSet;
import org.apache.flink.api.java.ExecutionEnvironment;
import org.apache.flink.api.java.functions.KeySelector;
import org.apache.flink.api.java.operators.DataSource;
import org.apache.flink.api.java.tuple.Tuple2;
import org.apache.flink.api.java.tuple.Tuple3;
import org.apache.flink.streaming.api.datastream.DataStream;
import org.apache.flink.streaming.api.environment.StreamExecutionEnvironment;
import org.apache.flink.util.Collector;
import org.datastreamapi.User;/*** @author alanchan**/
public class TestFirst_Join_Distinct_OutJoin_CrossDemo {public static void main(String[] args) throws Exception {ExecutionEnvironment env = ExecutionEnvironment.getExecutionEnvironment();joinFunction(env);env.execute();}public static void unionFunction(StreamExecutionEnvironment env) throws Exception {List<String> info1 = new ArrayList<>();info1.add("team A");info1.add("team B");List<String> info2 = new ArrayList<>();info2.add("team C");info2.add("team D");List<String> info3 = new ArrayList<>();info3.add("team E");info3.add("team F");List<String> info4 = new ArrayList<>();info4.add("team G");info4.add("team H");DataStream<String> source1 = env.fromCollection(info1);DataStream<String> source2 = env.fromCollection(info2);DataStream<String> source3 = env.fromCollection(info3);DataStream<String> source4 = env.fromCollection(info4);source1.union(source2).union(source3).union(source4).print();
//        team A
//        team C
//        team E
//        team G
//        team B
//        team D
//        team F
//        team H}public static void crossFunction(ExecutionEnvironment env) throws Exception {// cross,求两个集合的笛卡尔积,得到的结果数为:集合1的条数 乘以 集合2的条数List<String> info1 = new ArrayList<>();info1.add("team A");info1.add("team B");List<Tuple2<String, Integer>> info2 = new ArrayList<>();info2.add(new Tuple2("W", 3));info2.add(new Tuple2("D", 1));info2.add(new Tuple2("L", 0));DataSource<String> data1 = env.fromCollection(info1);DataSource<Tuple2<String, Integer>> data2 = env.fromCollection(info2);data1.cross(data2).print();
//        (team A,(W,3))
//        (team A,(D,1))
//        (team A,(L,0))
//        (team B,(W,3))
//        (team B,(D,1))
//        (team B,(L,0))}public static void outerJoinFunction(ExecutionEnvironment env) throws Exception {// Outjoin,跟sql语句中的left join,right join,full join意思一样// leftOuterJoin,跟join一样,但是左边集合的没有关联上的结果也会取出来,没关联上的右边为null// rightOuterJoin,跟join一样,但是右边集合的没有关联上的结果也会取出来,没关联上的左边为null// fullOuterJoin,跟join一样,但是两个集合没有关联上的结果也会取出来,没关联上的一边为nullList<Tuple2<Integer, String>> info1 = new ArrayList<>();info1.add(new Tuple2<>(1, "shenzhen"));info1.add(new Tuple2<>(2, "guangzhou"));info1.add(new Tuple2<>(3, "shanghai"));info1.add(new Tuple2<>(4, "chengdu"));List<Tuple2<Integer, String>> info2 = new ArrayList<>();info2.add(new Tuple2<>(1, "深圳"));info2.add(new Tuple2<>(2, "广州"));info2.add(new Tuple2<>(3, "上海"));info2.add(new Tuple2<>(5, "杭州"));DataSource<Tuple2<Integer, String>> data1 = env.fromCollection(info1);DataSource<Tuple2<Integer, String>> data2 = env.fromCollection(info2);// left join
//        eft join:7> (1,shenzhen,深圳)
//        left join:2> (3,shanghai,上海)
//        left join:8> (4,chengdu,未知)
//        left join:16> (2,guangzhou,广州)data1.leftOuterJoin(data2).where(0).equalTo(0).with(new JoinFunction<Tuple2<Integer, String>, Tuple2<Integer, String>, Tuple3<Integer, String, String>>() {@Overridepublic Tuple3<Integer, String, String> join(Tuple2<Integer, String> first, Tuple2<Integer, String> second) throws Exception {Tuple3<Integer, String, String> tuple = new Tuple3();if (second == null) {tuple.setField(first.f0, 0);tuple.setField(first.f1, 1);tuple.setField("未知", 2);} else {// 另外一种赋值方式,和直接用构造函数赋值相同tuple.setField(first.f0, 0);tuple.setField(first.f1, 1);tuple.setField(second.f1, 2);}return tuple;}}).print("left join");// right join
//        right join:2> (3,shanghai,上海)
//        right join:7> (1,shenzhen,深圳)
//        right join:15> (5,--,杭州)
//        right join:16> (2,guangzhou,广州)data1.rightOuterJoin(data2).where(0).equalTo(0).with(new JoinFunction<Tuple2<Integer, String>, Tuple2<Integer, String>, Tuple3<Integer, String, String>>() {@Overridepublic Tuple3<Integer, String, String> join(Tuple2<Integer, String> first, Tuple2<Integer, String> second) throws Exception {Tuple3<Integer, String, String> tuple = new Tuple3();if (first == null) {tuple.setField(second.f0, 0);tuple.setField("--", 1);tuple.setField(second.f1, 2);} else {// 另外一种赋值方式,和直接用构造函数赋值相同tuple.setField(first.f0, 0);tuple.setField(first.f1, 1);tuple.setField(second.f1, 2);}return tuple;}}).print("right join");// fullOuterJoin
//        fullOuterJoin:2> (3,shanghai,上海)
//        fullOuterJoin:8> (4,chengdu,--)
//        fullOuterJoin:15> (5,--,杭州)
//        fullOuterJoin:16> (2,guangzhou,广州)
//        fullOuterJoin:7> (1,shenzhen,深圳)data1.fullOuterJoin(data2).where(0).equalTo(0).with(new JoinFunction<Tuple2<Integer, String>, Tuple2<Integer, String>, Tuple3<Integer, String, String>>() {@Overridepublic Tuple3<Integer, String, String> join(Tuple2<Integer, String> first, Tuple2<Integer, String> second) throws Exception {Tuple3<Integer, String, String> tuple = new Tuple3();if (second == null) {tuple.setField(first.f0, 0);tuple.setField(first.f1, 1);tuple.setField("--", 2);} else if (first == null) {tuple.setField(second.f0, 0);tuple.setField("--", 1);tuple.setField(second.f1, 2);} else {// 另外一种赋值方式,和直接用构造函数赋值相同tuple.setField(first.f0, 0);tuple.setField(first.f1, 1);tuple.setField(second.f1, 2);}return tuple;}}).print("fullOuterJoin");}public static void joinFunction(ExecutionEnvironment env) throws Exception {List<Tuple2<Integer, String>> info1 = new ArrayList<>();info1.add(new Tuple2<>(1, "shenzhen"));info1.add(new Tuple2<>(2, "guangzhou"));info1.add(new Tuple2<>(3, "shanghai"));info1.add(new Tuple2<>(4, "chengdu"));List<Tuple2<Integer, String>> info2 = new ArrayList<>();info2.add(new Tuple2<>(1, "深圳"));info2.add(new Tuple2<>(2, "广州"));info2.add(new Tuple2<>(3, "上海"));info2.add(new Tuple2<>(5, "杭州"));DataSource<Tuple2<Integer, String>> data1 = env.fromCollection(info1);DataSource<Tuple2<Integer, String>> data2 = env.fromCollection(info2);////        join:2> ((3,shanghai),(3,上海))
//        join:16> ((2,guangzhou),(2,广州))
//        join:7> ((1,shenzhen),(1,深圳))data1.join(data2).where(0).equalTo(0).print("join");//        join2:2> (3,上海,shanghai)
//        join2:7> (1,深圳,shenzhen)
//        join2:16> (2,广州,guangzhou)DataSet<Tuple3<Integer, String, String>> data3 = data1.join(data2).where(0).equalTo(0).with(new JoinFunction<Tuple2<Integer, String>, Tuple2<Integer, String>, Tuple3<Integer, String, String>>() {@Overridepublic Tuple3<Integer, String, String> join(Tuple2<Integer, String> first, Tuple2<Integer, String> second) throws Exception {return new Tuple3<Integer, String, String>(first.f0, second.f1, first.f1);}});data3.print("join2");}public static void firstFunction(ExecutionEnvironment env) throws Exception {List<Tuple2<Integer, String>> info = new ArrayList<>();info.add(new Tuple2(1, "Hadoop"));info.add(new Tuple2(1, "Spark"));info.add(new Tuple2(1, "Flink"));info.add(new Tuple2(2, "Scala"));info.add(new Tuple2(2, "Java"));info.add(new Tuple2(2, "Python"));info.add(new Tuple2(3, "Linux"));info.add(new Tuple2(3, "Window"));info.add(new Tuple2(3, "MacOS"));DataSet<Tuple2<Integer, String>> dataSet = env.fromCollection(info);// 前几个
//	        dataSet.first(4).print();
//	        (1,Hadoop)
//	        (1,Spark)
//	        (1,Flink)
//	        (2,Scala)// 按照tuple2的第一个元素进行分组,查出每组的前2个
//	        dataSet.groupBy(0).first(2).print();
//	        (3,Linux)
//	        (3,Window)
//	        (1,Hadoop)
//	        (1,Spark)
//	        (2,Scala)
//	        (2,Java)// 按照tpule2的第一个元素进行分组,并按照倒序排列,查出每组的前2个dataSet.groupBy(0).sortGroup(1, Order.DESCENDING).first(2).print();
//	        (3,Window)
//	        (3,MacOS)
//	        (1,Spark)
//	        (1,Hadoop)
//	        (2,Scala)
//	        (2,Python)}public static void distinctFunction(ExecutionEnvironment env) throws Exception {List list = new ArrayList<Tuple3<Integer, Integer, Integer>>();list.add(new Tuple3<>(0, 3, 6));list.add(new Tuple3<>(0, 2, 5));list.add(new Tuple3<>(0, 3, 6));list.add(new Tuple3<>(1, 1, 9));list.add(new Tuple3<>(1, 2, 8));list.add(new Tuple3<>(1, 2, 8));list.add(new Tuple3<>(1, 3, 9));DataSet<Tuple3<Integer, Integer, Integer>> source = env.fromCollection(list);// 去除tuple3中元素完全一样的source.distinct().print();
//		(1,3,9)
//		(0,3,6)
//		(1,1,9)
//		(1,2,8)
//		(0,2,5)// 去除tuple3中第一个元素一样的,只保留第一个// source.distinct(0).print();
//		(1,1,9)
//		(0,3,6)// 去除tuple3中第一个和第三个相同的元素,只保留第一个// source.distinct(0,2).print();
//		(0,3,6)
//		(1,1,9)
//		(1,2,8)
//		(0,2,5)}public static void distinctFunction2(ExecutionEnvironment env) throws Exception {DataSet<User> source = env.fromCollection(Arrays.asList(new User(1, "alan1", "1", "1@1.com", 18, 3000), new User(2, "alan2", "2", "2@2.com", 19, 200),new User(3, "alan1", "3", "3@3.com", 18, 1000), new User(5, "alan1", "5", "5@5.com", 28, 1500), new User(4, "alan2", "4", "4@4.com", 20, 300)));//		source.distinct("name").print();
//		User(id=2, name=alan2, pwd=2, email=2@2.com, age=19, balance=200.0)
//		User(id=1, name=alan1, pwd=1, email=1@1.com, age=18, balance=3000.0)source.distinct("name", "age").print();
//		User(id=1, name=alan1, pwd=1, email=1@1.com, age=18, balance=3000.0)
//		User(id=2, name=alan2, pwd=2, email=2@2.com, age=19, balance=200.0)
//		User(id=5, name=alan1, pwd=5, email=5@5.com, age=28, balance=1500.0)
//		User(id=4, name=alan2, pwd=4, email=4@4.com, age=20, balance=300.0)}public static void distinctFunction3(ExecutionEnvironment env) throws Exception {DataSet<User> source = env.fromCollection(Arrays.asList(new User(1, "alan1", "1", "1@1.com", 18, -1000), new User(2, "alan2", "2", "2@2.com", 19, 200),new User(3, "alan1", "3", "3@3.com", 18, -1000), new User(5, "alan1", "5", "5@5.com", 28, 1500), new User(4, "alan2", "4", "4@4.com", 20, -300)));// 针对balance增加绝对值去重source.distinct(new KeySelector<User, Double>() {@Overridepublic Double getKey(User value) throws Exception {return Math.abs(value.getBalance());}}).print();
//		User(id=5, name=alan1, pwd=5, email=5@5.com, age=28, balance=1500.0)
//		User(id=2, name=alan2, pwd=2, email=2@2.com, age=19, balance=200.0)
//		User(id=1, name=alan1, pwd=1, email=1@1.com, age=18, balance=-1000.0)
//		User(id=4, name=alan2, pwd=4, email=4@4.com, age=20, balance=-300.0)}public static void distinctFunction4(ExecutionEnvironment env) throws Exception {List<String> info = new ArrayList<>();info.add("Hadoop,Spark");info.add("Spark,Flink");info.add("Hadoop,Flink");info.add("Hadoop,Flink");DataSet<String> source = env.fromCollection(info);source.flatMap(new FlatMapFunction<String, String>() {@Overridepublic void flatMap(String value, Collector<String> out) throws Exception {System.err.print("come in ");for (String token : value.split(",")) {out.collect(token);}}});source.distinct().print();}}

10、Window

KeyedStream → WindowedStream
Window 函数允许按时间或其他条件对现有 KeyedStream 进行分组。 以下是以 10 秒的时间窗口聚合:

inputStream.keyBy(0).window(Time.seconds(10));

Flink 定义数据片段以便(可能)处理无限数据流。 这些切片称为窗口。 此切片有助于通过应用转换处理数据块。 要对流进行窗口化,需要分配一个可以进行分发的键和一个描述要对窗口化流执行哪些转换的函数。要将流切片到窗口,可以使用 Flink 自带的窗口分配器。 我们有选项,如 tumbling windows, sliding windows, global 和 session windows。
具体参考系列文章
6、Flink四大基石之Window详解与详细示例(一)
6、Flink四大基石之Window详解与详细示例(二)
7、Flink四大基石之Time和WaterMaker详解与详细示例(watermaker基本使用、kafka作为数据源的watermaker使用示例以及超出最大允许延迟数据的接收实现)

11、WindowAll

DataStream → AllWindowedStream
windowAll 函数允许对常规数据流进行分组。 通常,这是非并行数据转换,因为它在非分区数据流上运行。
与常规数据流功能类似,也有窗口数据流功能。 唯一的区别是它们处理窗口数据流。 所以窗口缩小就像 Reduce 函数一样,Window fold 就像 Fold 函数一样,并且还有聚合。

dataStream.windowAll(TumblingEventTimeWindows.of(Time.seconds(5))); // Last 5 seconds of data

这适用于非并行转换的大多数场景。所有记录都将收集到 windowAll 算子对应的一个任务中。

具体参考系列文章
6、Flink四大基石之Window详解与详细示例(一)
6、Flink四大基石之Window详解与详细示例(二)
7、Flink四大基石之Time和WaterMaker详解与详细示例(watermaker基本使用、kafka作为数据源的watermaker使用示例以及超出最大允许延迟数据的接收实现)

12、Window Apply

WindowedStream → DataStream
AllWindowedStream → DataStream
将通用 function 应用于整个窗口。下面是一个手动对窗口内元素求和的 function。

如果你使用 windowAll 转换,则需要改用 AllWindowFunction。

windowedStream.apply(new WindowFunction<Tuple2<String,Integer>, Integer, Tuple, Window>() {public void apply (Tuple tuple,Window window,Iterable<Tuple2<String, Integer>> values,Collector<Integer> out) throws Exception {int sum = 0;for (value t: values) {sum += t.f1;}out.collect (new Integer(sum));}
});// 在 non-keyed 窗口流上应用 AllWindowFunction
allWindowedStream.apply (new AllWindowFunction<Tuple2<String,Integer>, Integer, Window>() {public void apply (Window window,Iterable<Tuple2<String, Integer>> values,Collector<Integer> out) throws Exception {int sum = 0;for (value t: values) {sum += t.f1;}out.collect (new Integer(sum));}
});

13、Window Reduce

WindowedStream → DataStream
对窗口应用 reduce function 并返回 reduce 后的值。

windowedStream.reduce (new ReduceFunction<Tuple2<String,Integer>>() {public Tuple2<String, Integer> reduce(Tuple2<String, Integer> value1, Tuple2<String, Integer> value2) throws Exception {return new Tuple2<String,Integer>(value1.f0, value1.f1 + value2.f1);}
});

14、Aggregations on windows

WindowedStream → DataStream
聚合窗口的内容。min和minBy之间的区别在于,min返回最小值,而minBy返回该字段中具有最小值的元素(max和maxBy相同)。

windowedStream.sum(0);
windowedStream.sum("key");
windowedStream.min(0);
windowedStream.min("key");
windowedStream.max(0);
windowedStream.max("key");
windowedStream.minBy(0);
windowedStream.minBy("key");
windowedStream.maxBy(0);
windowedStream.maxBy("key");

以上,本文主要介绍Flink 的10种常用的operator(window、distinct、join等)及以具体可运行示例进行说明.
如果需要了解更多内容,可以在本人Flink 专栏中了解更新系统的内容。

本专题分为五篇,即:
【flink番外篇】1、flink的23种常用算子介绍及详细示例(1)- map、flatmap和filter
【flink番外篇】1、flink的23种常用算子介绍及详细示例(2)- keyby、reduce和Aggregations
【flink番外篇】1、flink的23种常用算子介绍及详细示例(3)-window、distinct、join等
【flink番外篇】1、flink的23种常用算子介绍及详细示例(4)- union、window join、connect、outputtag、cache、iterator、project
【flink番外篇】1、flink的23种常用算子介绍及详细示例(完整版)

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/208694.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

macOS Big Sur/Mac电脑安装vscode显示您没有权限来打开应用程序‘Visual Studio Code‘ 请联系您的电脑或网络管理员问题修复

错误方法 首先我以为我的权限不足。&#xff0c;需要去用户群组里设置。结果根本不是这个的问题。 1.在系统偏好设置->用户与群组检查了一下我的用户是不是管理员 结果发现是管理员 2.根据苹果提示&#xff0c;右键我的文件夹->显示简介->最下面的共享与权限 解锁&…

SAP UI5 walkthrough step5 Controllers

在这个章节&#xff0c;我们要做的是&#xff0c;将之前的text文本展示为一个按钮&#xff0c;并将声明绑定在点击按钮事件。 因为改的是外观&#xff0c;所以我们修改的是view.XML webapp/view/App.view.xml <mvc:ViewcontrollerName"ui5.walkthrough.controller.A…

element中el-select多选v-model是对象数组

文章目录 一、问题二、解决三、最后 一、问题 element中的el-select的v-model一般都是字符串或者字符串数组&#xff0c;但是有些时候后端接口要求该字段要传对象或者对象数组&#xff0c;如果再转换一次数据&#xff0c;对于保存配置和回显都是吃力不讨好的事情。如下所示&am…

SpringBoot 项目将jar 部署在服务器引用外部 配置文件

SpringBoot 官方给出了四种方式引用外部配置文件的方式 在jar包的同一目录下建一个config文件夹&#xff0c;然后把配置文件放到这个文件夹下(最常用)直接把配置文件放到jar包的同级目录在classpath下建一个config文件夹&#xff0c;然后把配置文件放进去在classpath下直接放配…

图片整理

Lily上课时使用字母数字图片教小朋友们学习英语单词&#xff0c;每次都需要把这些图片按照大小&#xff08;ASCII码值从小到大&#xff09;排列收好。请大家给Lily帮忙&#xff0c;通过代码解决。 Lily使用的图片使用字符"A"到"Z"、“a"到"z”、…

centos7做gitlab数据灾备项目地址指向问题

如果你在 CentOS 7 上使用 GitLab 时&#xff0c;它回复的数据指向了另一个服务器的地址&#xff0c;可能是因为配置文件中的一些设置不正确。 要解决这个问题&#xff0c;可以尝试以下几个步骤&#xff1a; 检查 GitLab 配置文件&#xff1a;打开 GitLab 的配置文件&#xf…

python写数据进es中

1、自定义inde为&#xff1a;xxxx&#xff0c;data_to_insert也可以自定义函数 from elasticsearch import Elasticsearch from datetime import datetime, timedelta es Elasticsearch([http://es地址1:9200, es地址2:9200, es地址3:9200]) current_date datetime.now() for…

NTP时钟同步服务器(校时服务器)技术参数分享

NTP时钟同步服务器&#xff08;校时服务器&#xff09;技术参数分享 网络校时服务器是一款先进的智能化高精度时钟同步设备。 网络校时服务器从 GPS、北斗、GLONASS、Galileo等导航定位卫星系统上获取标准时间信息&#xff0c;并通过 NTP/SNTP 或其他网络协议&#xff0c;在网络…

二叉树的层序遍历[中等]

优质博文&#xff1a;IT-BLOG-CN 一、题目 给你二叉树的根节点root&#xff0c;返回其节点值的 层序遍历 。&#xff08;即逐层地&#xff0c;从左到右访问所有节点&#xff09;。 示例 1&#xff1a; 输入&#xff1a;root [3,9,20,null,null,15,7] 输出&#xff1a;[[3],…

设计模式的定义

1 组合模式: 整体-部分模式,它是一种将对象组合成树状层次结构的模式,用来表示整体和部分的关系,使用户对单个对象和组合对象具有一致的访问性,属于结构型设计模式 1.1 特点: 组合模式使得客户端代码可以一致的处理单个对象和组合对象更容易在组合体内加入新的对象,客户端不…

【数据挖掘】工具整理 - 期刊 - 会议 - 论坛/博客 - 数据集

文章目录 1 期刊2 会议3 论坛/博客4 数据集 1 期刊 Data Mining and Knowledge Discovery (DMKD)IEEE Transactions on Knowledge and Data Engineering (TKDE)Knowledge and Information Systems(KAIS)IEEE Transactions on Pattern Analysis and Machine Intelligence (TPAM…

二叉树的遍历之迭代遍历

前言&#xff1a;在学习二叉树的时候我们基本上已经了解过二叉树的三种遍历&#xff0c;对于这三种遍历&#xff0c;我们采用递归的思路&#xff0c;很简单的就能实现&#xff0c;那么如何用迭代的方法去解决问题&#xff1f; 我们首先来看第一个&#xff1a; 前序遍历 144.…

【计算机网络学习之路】HTTP请求

目录 前言 HTTP请求报文格式 一. 请求行 HTTP请求方法 GET和POST的区别 URL 二. 请求头 常见的Header 常见的额请求体数据类型 三. 请求体 结束语 前言 HTTP是应用层的一个协议。实际我们访问一个网页&#xff0c;都会像该网页的服务器发送HTTP请求&#xff0c;服务…

chrome 调试之 - 给微软小冰看病(无论给小冰发送什么内容都只回复“我已经开始升级啦,期待一下吧!”)

微软 Bing 搜索推出了小冰AI智能聊天模块&#xff0c;具体启用方式是用edge或chrome浏览器打开链接 cn.bing.com 后在输入框搜索任意内容&#xff0c;待搜索结果页面加载完并稍等片刻&#xff0c;页面右侧就会出现一个躲在滚动条后面的小萝莉&#xff0c;抚摸...不&#xff0c;…

Java-网络通信总结

文章目录 网络程序设计基础局域网与互联网 网络协议IP协议TCP/IP 协议端口域套接字 TCP 程序InterAddress 类ServerSocket 类 UDP 程序DatagramPacket 类DatagramSocket 类 网络程序设计基础 网络程序设计编写的是与其他计算机进行通信的程序。Java 已经将网络程序所需要的元素…

RK3588平台开发系列讲解(hardware)reference-ril源码分析

平台内核版本安卓版本RK3588Linux 5.10Android 12文章目录 一、reference-ril目录介绍二、支持的功能三、Android RIL 框架沉淀、分享、成长,让自己和他人都能有所收获!😄 一、reference-ril目录介绍 目录:3588-android12/hardware/ril/reference-ril

ElementUI 时间选择器如何限定选择时间

DatePicker 日期选择器 | Element Plus 我们如何限定我们的选择时间呢&#xff0c;比如限定选择时间为今天之前&#xff0c;或者今天之后的时间&#xff1f; 我们可以使用官方提供的disabled-date来实现 我们通过这个属性 做一个回调函数&#xff0c;在里面比较我们想要限定的时…

MongoDB数据建模与文档设计

目录 1. 文档数据库的概念 2. 数据建模的最佳实践 3. 复杂文档结构的设计 4. Java代码实践 1. 文档数据库的概念 MongoDB文档模型&#xff1a; MongoDB是一种文档数据库&#xff0c;它以BSON&#xff08;Binary JSON&#xff09;格式存储数据。文档是MongoDB中基本的数据单…

#HarmonyOS:基础语法

基础语法 定义了声明式UI描述&#xff1b; 自定义组件&#xff1b; 动态扩展UI元素的能力&#xff1b; 状态管理 多维度装填管理机制&#xff1b;父子组件间爷孙组件间全局范围内传递跨设备传递只读的单向传递可变的双向传递 渲染控制 UI描述&#xff1a;以声明式的方式来…

鸿蒙方舟开发框架ArkUI简介

语雀知识库地址&#xff1a;语雀HarmonyOS知识库 飞书知识库地址&#xff1a;飞书HarmonyOS知识库 嗨&#xff0c;各位别来无恙呐&#xff0c;我是小白 众所周知&#xff0c;华为在今年推出了 HarmonyOS 4.0 版本&#xff0c;而在此之前的版本中&#xff0c;HarmonyOS 应用的 …