Bert-vits2新版本V2.1英文模型本地训练以及中英文混合推理(mix)

在这里插入图片描述

中英文混合输出是文本转语音(TTS)项目中很常见的需求场景,尤其在技术文章或者技术视频领域里,其中文文本中一定会夹杂着海量的英文单词,我们当然不希望AI口播只会念中文,Bert-vits2老版本(2.0以下版本)并不支持英文训练和推理,但更新了底模之后,V2.0以上版本支持了中英文混合推理(mix)模式。

还是以霉霉为例子:

https://www.bilibili.com/video/BV1bB4y1R7Nu/

截取霉霉说英文的30秒音频素材片段:

Bert-vits2英文素材处理

首先克隆项目:

git clone https://github.com/v3ucn/Bert-VITS2_V210.git

安装依赖:

pip3 install -r requirements.txt

将音频素材放入Data/meimei_en/raw目录中,这里en代表英文角色。

随后对素材进行切分:

python3 audio_slicer.py

随后对音频进行识别和重新采样:

python3 short_audio_transcribe.py

这里还是使用语音识别模型whisper,默认选择medium模型,如果显存不够可以针对short_audio_transcribe.py文件进行修改:

import whisper  
import os  
import json  
import torchaudio  
import argparse  
import torch  
from config import config  
lang2token = {  'zh': "ZH|",  'ja': "JP|",  "en": "EN|",  }  
def transcribe_one(audio_path):  # load audio and pad/trim it to fit 30 seconds  audio = whisper.load_audio(audio_path)  audio = whisper.pad_or_trim(audio)  # make log-Mel spectrogram and move to the same device as the model  mel = whisper.log_mel_spectrogram(audio).to(model.device)  # detect the spoken language  _, probs = model.detect_language(mel)  print(f"Detected language: {max(probs, key=probs.get)}")  lang = max(probs, key=probs.get)  # decode the audio  options = whisper.DecodingOptions(beam_size=5)  result = whisper.decode(model, mel, options)  # print the recognized text  print(result.text)  return lang, result.text  
if __name__ == "__main__":  parser = argparse.ArgumentParser()  parser.add_argument("--languages", default="CJ")  parser.add_argument("--whisper_size", default="medium")  args = parser.parse_args()  if args.languages == "CJE":  lang2token = {  'zh': "ZH|",  'ja': "JP|",  "en": "EN|",  }  elif args.languages == "CJ":  lang2token = {  'zh': "ZH|",  'ja': "JP|",  }  elif args.languages == "C":  lang2token = {  'zh': "ZH|",  }

识别后的语音文件:

Data\meimei_en\raw/meimei_en/processed_0.wav|meimei_en|EN|But these were songs that didn't make it on the album.  
Data\meimei_en\raw/meimei_en/processed_1.wav|meimei_en|EN|because I wanted to save them for the next album. And then it turned out the next album was like a whole different thing. And so they get left behind.  
Data\meimei_en\raw/meimei_en/processed_2.wav|meimei_en|EN|and you always think back on these songs, and you're like.  
Data\meimei_en\raw/meimei_en/processed_3.wav|meimei_en|EN|What would have happened? I wish people could hear this.  
Data\meimei_en\raw/meimei_en/processed_4.wav|meimei_en|EN|but it belongs in that moment in time.  
Data\meimei_en\raw/meimei_en/processed_5.wav|meimei_en|EN|So, now that I get to go back and revisit my old work,  
Data\meimei_en\raw/meimei_en/processed_6.wav|meimei_en|EN|I've dug up those songs.  
Data\meimei_en\raw/meimei_en/processed_7.wav|meimei_en|EN|from the crypt they were in.  
Data\meimei_en\raw/meimei_en/processed_8.wav|meimei_en|EN|And I have like, I've reached out to artists that I love and said, do you want to?  
Data\meimei_en\raw/meimei_en/processed_9.wav|meimei_en|EN|do you want to sing this with me? You know, Phoebe Bridgers is one of my favorite artists.

可以看到,每个切片都有对应的英文字符。

接着就是标注,以及bert模型文件生成:

python3 preprocess_text.py  
python3 emo_gen.py  
python3 spec_gen.py  
python3 bert_gen.py

运行完毕后,查看英文训练集:

Data\meimei_en\raw/meimei_en/processed_3.wav|meimei_en|EN|What would have happened? I wish people could hear this.|_ w ah t w uh d hh ae V hh ae p ah n d ? ay w ih sh p iy p ah l k uh d hh ih r dh ih s . _|0 0 2 0 0 2 0 0 2 0 0 2 0 1 0 0 0 2 0 2 0 0 2 0 1 0 0 2 0 0 2 0 0 2 0 0 0|1 3 3 3 6 1 1 3 5 3 3 3 1 1  
Data\meimei_en\raw/meimei_en/processed_6.wav|meimei_en|EN|I've dug up those songs.|_ ay V d ah g ah p dh ow z s ao ng z . _|0 2 0 0 2 0 2 0 0 2 0 0 2 0 0 0 0|1 1 1 0 3 2 3 4 1 1  
Data\meimei_en\raw/meimei_en/processed_5.wav|meimei_en|EN|So, now that I get to go back and revisit my old work,|_ s ow , n aw dh ae t ay g eh t t uw g ow b ae k ae n d r iy V ih z ih t m ay ow l d w er k , _|0 0 2 0 0 2 0 2 0 2 0 2 0 0 2 0 2 0 2 0 2 0 0 0 1 0 2 0 1 0 0 2 2 0 0 0 2 0 0 0|1 2 1 2 3 1 3 2 2 3 3 7 2 3 3 1 1  
Data\meimei_en\raw/meimei_en/processed_1.wav|meimei_en|EN|because I wanted to save them for the next album. And then it turned out the next album was like a whole different thing. And so they get left behind.|_ b ih k ao z ay w aa n t ah d t uw s ey V dh eh m f ao r dh ah n eh k s t ae l b ah m . ae n d dh eh n ih t t er n d aw t dh ah n eh k s t ae l b ah m w aa z l ay k ah hh ow l d ih f er ah n t th ih ng . ae n d s ow dh ey g eh t l eh f t b ih hh ay n d . _|0 0 1 0 2 0 2 0 2 0 0 1 0 0 2 0 2 0 0 2 0 0 2 0 0 1 0 2 0 0 0 2 0 0 1 0 0 2 0 0 0 2 0 2 0 0 2 0 0 2 0 0 1 0 2 0 0 0 2 0 0 1 0 0 2 0 0 2 0 1 0 2 0 0 2 0 1 1 0 0 0 2 0 0 2 0 0 0 2 0 2 0 2 0 0 2 0 0 0 1 0 2 0 0 0 0|1 5 1 6 2 3 3 3 2 5 5 1 3 3 2 4 2 2 5 5 3 3 1 3 7 3 1 3 2 2 3 4 6 1 1  
Data\meimei_en\raw/meimei_en/processed_2.wav|meimei_en|EN|and you always think back on these songs, and you're like.|_ ae n d y uw ao l w ey z th ih ng k b ae k aa n dh iy z s ao ng z , ae n d y uh r l ay k . _|0 2 0 0 0 2 2 0 0 3 0 0 2 0 0 0 2 0 2 0 0 2 0 0 2 0 0 0 2 0 0 0 2 0 0 2 0 0 0|1 3 2 5 4 3 2 3 4 1 3 1 1 1 3 1 1

至此,英文数据集就处理好了。

Bert-vits2英文模型训练

随后运行训练文件:

python3 train_ms.py

就可以在本地训练英文模型了。

这里需要注意的是,中文模型和英文模型通常需要分别进行训练,换句话说,不能把英文训练集和中文训练集混合着进行训练。

中文和英文在语言结构、词汇和语法等方面存在显著差异。中文采用汉字作为基本单元,而英文使用字母作为基本单元。中文的句子结构和语序也与英文有所不同。因此,中文模型和英文模型在学习语言特征和模式时需要不同的处理方式和模型架构。

中英文文本数据的编码方式不同。中文通常使用Unicode编码,而英文使用ASCII或Unicode编码。这导致了中文和英文文本数据的表示方式存在差异。在混合训练时,中英文文本数据的编码和处理方式需要统一,否则会导致模型训练过程中的不一致性和错误。

所以,Bert-vits2所谓的Mix模式也仅仅指的是推理,而非训练,当然,虽然没法混合数据集进行训练,但是开多进程进行中文和英文模型的并发训练还是可以的。

Bert-vits2中英文模型混合推理

英文模型训练完成后(所谓的训练完成,往往是先跑个50步看看效果),将中文模型也放入Data目录,关于中文模型的训练,请移步:本地训练,立等可取,30秒音频素材复刻霉霉讲中文音色基于Bert-VITS2V2.0.2,囿于篇幅,这里不再赘述。

模型结构如下:

E:\work\Bert-VITS2-v21_demo\Data>tree /f  
Folder PATH listing for volume myssd  
Volume serial number is 7CE3-15AE  
E:.  
├───meimei_cn  
│   │   config.json  
│   │   config.yml  
│   │  
│   ├───filelists  
│   │       cleaned.list  
│   │       short_character_anno.list  
│   │       train.list  
│   │       val.list  
│   │  
│   ├───models  
│   │       G_50.pth  
│   │  
│   └───raw  
│       └───meimei  
│               meimei_0.wav  
│               meimei_1.wav  
│               meimei_2.wav  
│               meimei_3.wav  
│               meimei_4.wav  
│               meimei_5.wav  
│               meimei_6.wav  
│               meimei_7.wav  
│               meimei_8.wav  
│               meimei_9.wav  
│               processed_0.bert.pt  
│               processed_0.emo.npy  
│               processed_0.spec.pt  
│               processed_0.wav  
│               processed_1.bert.pt  
│               processed_1.emo.npy  
│               processed_1.spec.pt  
│               processed_1.wav  
│               processed_2.bert.pt  
│               processed_2.emo.npy  
│               processed_2.spec.pt  
│               processed_2.wav  
│               processed_3.bert.pt  
│               processed_3.emo.npy  
│               processed_3.spec.pt  
│               processed_3.wav  
│               processed_4.bert.pt  
│               processed_4.emo.npy  
│               processed_4.spec.pt  
│               processed_4.wav  
│               processed_5.bert.pt  
│               processed_5.emo.npy  
│               processed_5.spec.pt  
│               processed_5.wav  
│               processed_6.bert.pt  
│               processed_6.emo.npy  
│               processed_6.spec.pt  
│               processed_6.wav  
│               processed_7.bert.pt  
│               processed_7.emo.npy  
│               processed_7.spec.pt  
│               processed_7.wav  
│               processed_8.bert.pt  
│               processed_8.emo.npy  
│               processed_8.spec.pt  
│               processed_8.wav  
│               processed_9.bert.pt  
│               processed_9.emo.npy  
│               processed_9.spec.pt  
│               processed_9.wav  
│  
└───meimei_en  │   config.json  │   config.yml  │  ├───filelists  │       cleaned.list  │       short_character_anno.list  │       train.list  │       val.list  │  ├───models  │   │   DUR_0.pth  │   │   DUR_50.pth  │   │   D_0.pth  │   │   D_50.pth  │   │   events.out.tfevents.1701484053.ly.16484.0  │   │   events.out.tfevents.1701620324.ly.10636.0  │   │   G_0.pth  │   │   G_50.pth  │   │   train.log  │   │  │   └───eval  │           events.out.tfevents.1701484053.ly.16484.1  │           events.out.tfevents.1701620324.ly.10636.1  │  └───raw  └───meimei_en  meimei_en_0.wav  meimei_en_1.wav  meimei_en_2.wav  meimei_en_3.wav  meimei_en_4.wav  meimei_en_5.wav  meimei_en_6.wav  meimei_en_7.wav  meimei_en_8.wav  meimei_en_9.wav  processed_0.bert.pt  processed_0.emo.npy  processed_0.wav  processed_1.bert.pt  processed_1.emo.npy  processed_1.spec.pt  processed_1.wav  processed_2.bert.pt  processed_2.emo.npy  processed_2.spec.pt  processed_2.wav  processed_3.bert.pt  processed_3.emo.npy  processed_3.spec.pt  processed_3.wav  processed_4.bert.pt  processed_4.emo.npy  processed_4.wav  processed_5.bert.pt  processed_5.emo.npy  processed_5.spec.pt  processed_5.wav  processed_6.bert.pt  processed_6.emo.npy  processed_6.spec.pt  processed_6.wav  processed_7.bert.pt  processed_7.emo.npy  processed_7.wav  processed_8.bert.pt  processed_8.emo.npy  processed_8.wav  processed_9.bert.pt  processed_9.emo.npy  processed_9.wav

这里meimei_cn代表中文角色模型,meimei_en代表英文角色模型,分别都只训练了50步。

启动推理服务:

python3 webui.py

访问http://127.0.0.1:7860/,在文本框中输入:

[meimei_cn]<zh>但这些歌曲没进入专辑因为想留着他们下一张专辑用,然後下一張專輯完全不同所以他們被拋在了後面  
[meimei_en]<en>But these were songs that didn't make it on the album.  
because I wanted to save them for the next album. And then it turned out the next album was like a whole different thing. And so they get left behind.

随后将语言设置为mix。

这里通过[角色]和<语言>对文本进行标识,让系统选择对应的中文或者英文模型进行并发推理:

如果本地只有一个英文模型和一个中文模型,也可以选择auto模型,进行自动中英文混合推理:

但这些歌曲没进入专辑因为想留着他们下一张专辑用,然後下一張專輯完全不同所以他們被拋在了後面  
But these were songs that didn't make it on the album.  
because I wanted to save them for the next album. And then it turned out the next album was like a whole different thing. And so they get left behind.

系统会自动侦测文本语言从而选择对应模型进行推理。

结语

在技术文章翻译转口播或者视频、跨语言信息检索等任务中需要处理中英文之间的转换和对齐,通过Bert-vits2中英文混合推理,可以更有效地处理这些任务,并提供更准确和连贯的结果,Bert-vits2中英文混合推理整合包地址如下:

https://pan.baidu.com/s/1iaC7f1GPXevDrDMCRCs8uQ?pwd=v3uc

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/206789.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

完整方案开放下载!详解中国移动《通信网络中量子计算应用研究报告》

8月30日&#xff0c;中国移动在第四届科技周暨战略性新兴产业共创发展大会上重磅发布了《通信网络中量子计算应用研究报告》。 玻色量子作为中国移动在光量子计算领域的唯一一家合作企业兼战投企业&#xff0c;在量子计算应用于通信行业达成了深入合作&#xff0c;并在5G天线多…

干货分享|300平米A级机房设计方案

本方案中XXX计算机中心机房建设工程&#xff0c;是XXX的数据中心&#xff0c;机房位于建筑的X层&#xff0c;计算机机房面积300㎡。采购设备以及装修工艺主要用于XXX所属计算机机房装修工程。 考虑到中心机房投资大、使用周期长&#xff0c;而业主业务发展快&#xff0c;现代技…

空间地图GIS基础

关注微信公众号掌握更多技术动态 --------------------------------------------------------------- 一、GIS基本概念 地理信息系统&#xff08;Geographic Informaiton System, GIS&#xff09;是一个可以建立、浏览、查询、分析地理空间数据的软件系统&#xff0c;其功能小…

【RHCE】openlab搭建web网站

网站需求&#xff1a; 1、基于域名 www.openlab.com 可以访问网站内容为 welcome to openlab!!! 增加映射 [rootlocalhost ~]# vim /etc/hosts 创建网页 [rootlocalhost ~]# mkdir -p /www/openlab [rootlocalhost ~]# echo welcome to openlab > /www/openlab/index.h…

利用法线贴图渲染逼真的3D老虎模型

在线工具推荐&#xff1a; 3D数字孪生场景编辑器 - GLTF/GLB材质纹理编辑器 - 3D模型在线转换 - Three.js AI自动纹理开发包 - YOLO 虚幻合成数据生成器 - 三维模型预览图生成器 - 3D模型语义搜索引擎 当谈到游戏角色的3D模型风格时&#xff0c;有几种不同的风格&#xf…

3-Mybatis

文章目录 Mybatis概述什么是Mybatis&#xff1f;Mybatis导入知识补充数据持久化持久层 第一个Mybatis程序&#xff1a;数据的增删改查查创建环境编写代码1、目录结构2、核心配置文件&#xff1a;resources/mybatis-config.xml3、mybatis工具类&#xff1a;Utils/MybatisUtils4、…

ALNS的MDP模型| 还没整理完12-08

有好几篇论文已经这样做了&#xff0c;先摆出一篇&#xff0c;然后再慢慢更新 第一篇 该篇论文提出了一种称为深增强ALNS&#xff08;DR-ALNS&#xff09;的方法&#xff0c;它利用DRL选择最有效的破坏和修复运营商&#xff0c;配置破坏严重性参数施加在破坏算子上&#xff0c…

第二十一章网络通信总结

21.1 网络程序设计基础 Java网络程序设计基础涉及使用Java编程语言创建网络应用程序。这通常涉及到使用Java的网络API&#xff0c;如java.net包&#xff0c;以建立客户端和服务器之间的通信。 基本步骤包括&#xff1a; 1.创建服务器&#xff1a; 使用ServerSocket类创建服务…

常见的中间件--消息队列中间件测试点

最近刷题&#xff0c;看到了有问中间件的题目&#xff0c;于是整理了一些中间件的知识&#xff0c;大多是在小破站上的笔记&#xff0c;仅供大家参考~ 主要分为七个部分来分享&#xff1a; 一、常见的中间件 二、什么是队列&#xff1f; 三、常见消息队列MQ的比较 四、队列…

12_企业架构之Tomcat部署使用

Tomcat 学习目标和内容 1、能够描述Tomcat的使用场景 2、能够简单描述Tomcat的工作原理 3、能够实现部署安装Tomcat 4、能够实现配置Tomcat的service服务和自启动 5、能够实现Tomcat的Host的配置 6、能够实现Nginx反向代理Tomcat 7、能够实现Nginx负载均衡到Tomcat 一、Tomcat介…

linux的定时任务Corntab

安装crontab # yum安装crontab yum install -y crontab# 开机自启crond服务并现在启动 systemctl enable --now crondcron系统任务调度 系统任务调度&#xff1a; 系统周期性所要执行的工作&#xff0c;比如写缓存数据到硬盘、日志清理等。 在/etc/crontab文件&#xff0c;这…

机器学习之全面了解回归学习器

我们将和大家一起探讨机器学习与数据科学的主题。 本文主要讨论大家针对回归学习器提出的问题。我将概要介绍&#xff0c;然后探讨以下五个问题&#xff1a; 1. 能否将回归学习器用于时序数据&#xff1f; 2. 该如何缩短训练时间&#xff1f; 3. 该如何解释不同模型的结果和…

No suitable driver found for jdbc:mysql://localhost:3306(2023/12/7更新)

有两种情况&#xff1a; 压根没安装下载了但没设为库或方法不对 大多数为第一种情况&#xff1a; 一. 下载jdbc 打开网址选择一个版本进行下载 https://nowjava.com/jar/version/mysql/mysql-connector-java.html 二.安装jdbc 在项目里建一个lib文件夹 在把之前下载的jar文…

优化 SQL 日志记录的方法

为什么 SQL 日志记录是必不可少的 SQL 日志记录在数据库安全和审计中起着至关重要的作用&#xff0c;它涉及跟踪在数据库上执行的所有 SQL 语句&#xff0c;从而实现审计、故障排除和取证分析。SQL 日志记录可以提供有关数据库如何访问和使用的宝贵见解&#xff0c;使其成为确…

JNPF低代码平台详解 -- 系统架构

目录 一、技术介绍 技术架构 二、设计原理 三、界面展示 1.代码生成器 2.工作流程 3.门户设计 4.大屏设计 5.报表设计 6.第三方登录 7.多租户实现 8.分布式调度 9.消息中心 四、功能框架 JNPF低代码是一款新奇、实用、高效的企业级软件开发工具&#xff0c;支持企…

Qt/C++音视频开发58-逐帧播放/上一帧下一帧/切换播放进度/实时解码

一、前言 逐帧播放是近期增加的功能&#xff0c;之前也一直思考过这个功能该如何实现&#xff0c;对于mdk/qtav等内核组件&#xff0c;可以直接用该组件提供的接口实现即可&#xff0c;而对于ffmpeg&#xff0c;需要自己处理&#xff0c;如果有缓存的数据的话&#xff0c;可以…

Rust的eBFP框架Aya(一) - Linux内核网络基础

前言 在我的Rust入门及实战系列文章中已经说明&#xff0c; Rust是一门内存安全的高性能编程语言&#xff0c;从它的这些优秀特性来看&#xff0c;就是一门专为系统开发而诞生的语言。至于很多使用Rust来进行web开发的行为&#xff0c;不能说它们不好&#xff0c;只能说是杀鸡…

2017下半年软工(桥接模式)

题目——桥接模式&#xff08;抽象调用实现部分&#xff09; package org.example.桥接模式;/*** 桥接模式的核心思想是将抽象部分与它的实现部分分离&#xff0c;使它们可以独立变化&#xff0c;就是说你在实现部分&#xff1a;WinImp、LinuxImp基础上还能加上RedHatImp&#…

uniapp 输入框输入时,会将内容顶上去的解决方案

// 设置页面最小高度 export const setPageMinHeight () > {return {position: relative,min-height: uni.getSystemInfoSync().windowHeight px} }页面使用&#xff1a; import {setPageMinHeight} from "/utils/uniUtil";data() {return {minHeight: setPag…

Unity 状态系统

状态系统 原理食用方法Demo 原理 #mermaid-svg-lUbxJ8eMP3KqrEhY {font-family:"trebuchet ms",verdana,arial,sans-serif;font-size:16px;fill:#333;}#mermaid-svg-lUbxJ8eMP3KqrEhY .error-icon{fill:#552222;}#mermaid-svg-lUbxJ8eMP3KqrEhY .error-text{fill:#55…