ALNS的MDP模型| 还没整理完12-08

有好几篇论文已经这样做了,先摆出一篇,然后再慢慢更新

第一篇

在这里插入图片描述

该篇论文提出了一种称为深增强ALNS(DR-ALNS)的方法,它利用DRL选择最有效的破坏和修复运营商,配置破坏严重性参数施加在破坏算子上,并设置ALNS框架内的验收标准值。DRL在每次搜索迭代时配置ALNS。与其他基于DRL的针对特定的优化问题的方法,这篇论文的目标是以一种概括的方式利用DRL。

为了实现这一点,该方法除了定义的破坏算子和修复算子,不依赖于任何特定于问题的信息。下图提供了用于DR-ALNS的伪代码和训练算法。
在这里插入图片描述

在该方法中,学习选择破坏和修复策略,配置破坏度,并在自适应大邻域搜索过程的每次迭代中设置验收标准参数。
将这个学习问题建模为一个连续的决策过程,在这个过程中,代理人通过采取行动和观察结果与环境进行交互。该过程使用称为马尔可夫决策过程(MDP)的数学框架来建模,其表示为元组<S,A,R,P>。

状态空间S为DRL代理提供了所需的信息,用于在搜索迭代期间做出明智的决策以选择最佳的可能动作。为了实现这一点,我们将S表示为包含7个问题不可知特征的一维向量,如表1所示。这些特征为代理提供了关于搜索过程的相关信息,

包括:
当前解决方案是否是迄今为止找到的最佳解决方案,
最佳解决方案最近是否已被改进,
当前解决方案最近是否已被接受
新的当前解决方案是否是新的最佳解决方案,
与最佳解决方案的成本差异百分比,
未改进最佳解决方案的迭代次数
剩余搜索预算百分比

在这里插入图片描述
动作空间A由破坏算子选择、修复算子选择、破坏度配置、验收标准参数设置四个动作空间组成。在每个时间步,DRL代理必须为每个空间选择一个操作。
在这里插入图片描述

?不是选择一组动作而是选择单个动作?

奖励函数
在这里插入图片描述

状态转移函数P是由DRL主体通过与环境交互来学习的,因为主体没有关于它的先验知识。通过以这种方式制定MDP,我们为DRL主体提供了一个问题不可知的环境来学习如何选择动作。这意味着状态空间S和奖励函数R不依赖于任何特定于问题的信息。为了使用该方法,实践者只需要定义破坏“和修复”算子,然后使用它们在MDP中创建动作空间A。

?不是选择一组动作而是选择单个动作?
没读懂…

摘要中写
.ALNS在搜索过程中自适应地选择各种算法,利用它们的优势为优化问题找到好的解决方案。然而,ALNS的有效性取决于其选择和验收参数的适当配置。为了解决这一限制,我们提出了一种深度强化学习(DRL)方法,该方法在搜索过程中选择算法、调整参数并控制接受标准。
ALNS的壳,DRL的芯?

所提出的方法的目的基于搜索状态,学习如何配置ALNS的下一次迭代,以获得良好的解决方案的基础优化问题。

第二篇

在这里插入图片描述

这个是根据表现选择算法对儿 ,该框架使用深度强化学习(Deep RL)作为ALNS自适应层的替代方案,与仅考虑搜索引擎的过去性能以用于未来选择的自适应层不同,深度RL代理能够考虑来自搜索过程的附加信息,例如,迭代之间目标值的差异,以做出更好的决策。这是由于深度学习方法的表示能力和深度RL代理的决策能力,可以学习适应不同的问题和实例特征。

常见的算子也给改了
在这里插入图片描述
状态空间

在这里插入图片描述
动作空间就是选择启发式

奖励函数 5310
在这里插入图片描述
这两篇的训练方法都是PPO

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/206776.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

第二十一章网络通信总结

21.1 网络程序设计基础 Java网络程序设计基础涉及使用Java编程语言创建网络应用程序。这通常涉及到使用Java的网络API&#xff0c;如java.net包&#xff0c;以建立客户端和服务器之间的通信。 基本步骤包括&#xff1a; 1.创建服务器&#xff1a; 使用ServerSocket类创建服务…

常见的中间件--消息队列中间件测试点

最近刷题&#xff0c;看到了有问中间件的题目&#xff0c;于是整理了一些中间件的知识&#xff0c;大多是在小破站上的笔记&#xff0c;仅供大家参考~ 主要分为七个部分来分享&#xff1a; 一、常见的中间件 二、什么是队列&#xff1f; 三、常见消息队列MQ的比较 四、队列…

12_企业架构之Tomcat部署使用

Tomcat 学习目标和内容 1、能够描述Tomcat的使用场景 2、能够简单描述Tomcat的工作原理 3、能够实现部署安装Tomcat 4、能够实现配置Tomcat的service服务和自启动 5、能够实现Tomcat的Host的配置 6、能够实现Nginx反向代理Tomcat 7、能够实现Nginx负载均衡到Tomcat 一、Tomcat介…

linux的定时任务Corntab

安装crontab # yum安装crontab yum install -y crontab# 开机自启crond服务并现在启动 systemctl enable --now crondcron系统任务调度 系统任务调度&#xff1a; 系统周期性所要执行的工作&#xff0c;比如写缓存数据到硬盘、日志清理等。 在/etc/crontab文件&#xff0c;这…

机器学习之全面了解回归学习器

我们将和大家一起探讨机器学习与数据科学的主题。 本文主要讨论大家针对回归学习器提出的问题。我将概要介绍&#xff0c;然后探讨以下五个问题&#xff1a; 1. 能否将回归学习器用于时序数据&#xff1f; 2. 该如何缩短训练时间&#xff1f; 3. 该如何解释不同模型的结果和…

No suitable driver found for jdbc:mysql://localhost:3306(2023/12/7更新)

有两种情况&#xff1a; 压根没安装下载了但没设为库或方法不对 大多数为第一种情况&#xff1a; 一. 下载jdbc 打开网址选择一个版本进行下载 https://nowjava.com/jar/version/mysql/mysql-connector-java.html 二.安装jdbc 在项目里建一个lib文件夹 在把之前下载的jar文…

优化 SQL 日志记录的方法

为什么 SQL 日志记录是必不可少的 SQL 日志记录在数据库安全和审计中起着至关重要的作用&#xff0c;它涉及跟踪在数据库上执行的所有 SQL 语句&#xff0c;从而实现审计、故障排除和取证分析。SQL 日志记录可以提供有关数据库如何访问和使用的宝贵见解&#xff0c;使其成为确…

JNPF低代码平台详解 -- 系统架构

目录 一、技术介绍 技术架构 二、设计原理 三、界面展示 1.代码生成器 2.工作流程 3.门户设计 4.大屏设计 5.报表设计 6.第三方登录 7.多租户实现 8.分布式调度 9.消息中心 四、功能框架 JNPF低代码是一款新奇、实用、高效的企业级软件开发工具&#xff0c;支持企…

Qt/C++音视频开发58-逐帧播放/上一帧下一帧/切换播放进度/实时解码

一、前言 逐帧播放是近期增加的功能&#xff0c;之前也一直思考过这个功能该如何实现&#xff0c;对于mdk/qtav等内核组件&#xff0c;可以直接用该组件提供的接口实现即可&#xff0c;而对于ffmpeg&#xff0c;需要自己处理&#xff0c;如果有缓存的数据的话&#xff0c;可以…

Rust的eBFP框架Aya(一) - Linux内核网络基础

前言 在我的Rust入门及实战系列文章中已经说明&#xff0c; Rust是一门内存安全的高性能编程语言&#xff0c;从它的这些优秀特性来看&#xff0c;就是一门专为系统开发而诞生的语言。至于很多使用Rust来进行web开发的行为&#xff0c;不能说它们不好&#xff0c;只能说是杀鸡…

2017下半年软工(桥接模式)

题目——桥接模式&#xff08;抽象调用实现部分&#xff09; package org.example.桥接模式;/*** 桥接模式的核心思想是将抽象部分与它的实现部分分离&#xff0c;使它们可以独立变化&#xff0c;就是说你在实现部分&#xff1a;WinImp、LinuxImp基础上还能加上RedHatImp&#…

uniapp 输入框输入时,会将内容顶上去的解决方案

// 设置页面最小高度 export const setPageMinHeight () > {return {position: relative,min-height: uni.getSystemInfoSync().windowHeight px} }页面使用&#xff1a; import {setPageMinHeight} from "/utils/uniUtil";data() {return {minHeight: setPag…

Unity 状态系统

状态系统 原理食用方法Demo 原理 #mermaid-svg-lUbxJ8eMP3KqrEhY {font-family:"trebuchet ms",verdana,arial,sans-serif;font-size:16px;fill:#333;}#mermaid-svg-lUbxJ8eMP3KqrEhY .error-icon{fill:#552222;}#mermaid-svg-lUbxJ8eMP3KqrEhY .error-text{fill:#55…

官方officevisio在线安装包

在线安装包&#xff0c;在线就是要有网络环境&#xff0c;你能搜到这篇博客&#xff0c;就初步具备网络环境 visio在线安装包.zip官方版下载丨最新版下载丨绿色版下载丨APP下载-123云盘 在线安装包如下&#xff0c;双击执行安装即可&#xff0c;可供选择的64/32位 软件的激活与…

【扩散模型】ControlNet从原理到实战

ControlNet从原理到实战 ControlNet原理ControlNet应用于大型预训练扩散模型ControlNet训练过程ControlNet示例1 ControlNet与Canny Edge2. ControlNet与Depth3. ControlNet与M-LSD Lines4. ControlNet与HED Boundary ControlNet实战Canny Edge实战Open Pose 小结参考资料 Cont…

Linux系统上RabbitMQ安装教程

一、安装前环境准备 Linux&#xff1a;CentOS 7.9 RabbitMQ Erlang 1、系统内须有C等基本工具 yum install build-essential openssl openssl-devel unixODBC unixODBC-devel make gcc gcc-c kernel-devel m4 ncurses-devel tk tc xz socat2、下载安装包 1&#xff09;首先&a…

[linux] kaggle 数据集用linux下载

你可以通过以下步骤获取Kaggle的下载链接并在Linux中进行下载&#xff1a; 首先&#xff0c;确保你已经安装了Python和Kaggle API。如果没有安装&#xff0c;你可以通过以下命令安装&#xff1a; pip install kaggle 接着&#xff0c;你需要在Kaggle网站上获取API Token。登录…

【PyTorch】 暂退法(dropout)

文章目录 1. 理论介绍2. 实例解析2.1. 实例描述2.2. 代码实现2.2.1. 主要代码2.2.2. 完整代码2.2.3. 输出结果 1. 理论介绍 线性模型泛化的可靠性是有代价的&#xff0c;因为线性模型没有考虑到特征之间的交互作用&#xff0c;由此模型灵活性受限。泛化性和灵活性之间的基本权…

Docker构建自定义镜像

创建一个docker-demo的文件夹,放入需要构建的文件 主要是配置Dockerfile文件 第一种配置方法 # 指定基础镜像 FROM ubuntu:16.04 # 配置环境变量&#xff0c;JDK的安装目录 ENV JAVA_DIR/usr/local# 拷贝jdk和java项目的包 COPY ./jdk8.tar.gz $JAVA_DIR/ COPY ./docker-demo…

Java基础50题: 21.实现一个方法printArray, 以数组为参数,循环访问数组中的每个元素,打印每个元素的值.

概述 实现一个方法printArray, 以数组为参数,循环访问数组中的每个元素,打印每个元素的值. 代码 public static void printArray(int[] array) {for (int i 0; i < array.length; i) {System.out.println(array[i] " ");}System.out.println();}public static…