目录
线程的声明
线程创建过程
向线程中投递消息
从消息队列中取消息的具体实现
处理线程消息
webrtc线程模块的实现逻辑在 rtc_base\thread.h 文件中
比如想创建一个线程:
//声明要创建的线程指针,通过智能指针管理
std::unique_ptr<rtc::Thread> video_thread_;
// 创建线程
video_thread_ = rtc::Thread::Create();
//设置新创建的线程名
video_thread_->SetName("video_thread_", video_thread_.get());
//开启线程
video_thread_->Start();
//向线程投递要处理的消息video_thread_->Post(RTC_FROM_HERE, this, MESSAGE_ID);// MESSAGE_ID 自定义的消息id//向线程投入带有消息体的消息video_thread_->Post(RTC_FROM_HERE, this, VIDEO_INFO,new rtc::TypedMessageData<VIDEO_INFO_MEESAGE>(r));//其中RTC_FROM_HERE 是个宏定义,标记线程调用的原位置
// Define a macro to record the current source location.
#define RTC_FROM_HERE RTC_FROM_HERE_WITH_FUNCTION(__FUNCTION__)
下面看下线程的具体实现
线程的声明
//线程继承自一个任务队列,并且有两个存储消息的消息队列
//普通消息 messages_,延时消息 delayed_messages_
class RTC_LOCKABLE RTC_EXPORT Thread : public webrtc::TaskQueueBase {explicit Thread(SocketServer* ss);explicit Thread(std::unique_ptr<SocketServer> ss);privateMessage msgPeek_;//声明对应的消息//MessageList 具体的定义://typedef std::list<Message> MessageList;MessageList messages_ RTC_GUARDED_BY(crit_); //延时队列继承自 std::priority_queue<DelayedMessage> PriorityQueue delayed_messages_ RTC_GUARDED_BY(crit_); uint32_t delayed_next_num_ RTC_GUARDED_BY(crit_);
}
创建线程的实现
//具体的创建函数
//构造中传入一个 NullSocketServer() 作为参数
std::unique_ptr<Thread> Thread::Create() {return std::unique_ptr<Thread>(new Thread(std::unique_ptr<SocketServer>(new NullSocketServer())));
}//最终调用到这里,线程构造函数
Thread::Thread(SocketServer* ss, bool do_init): fPeekKeep_(false),delayed_next_num_(0),fInitialized_(false),fDestroyed_(false),stop_(0),ss_(ss) {RTC_DCHECK(ss);//把当前线程的this指针传给 NullSocketServerss_->SetMessageQueue(this);
//设置线程的初始名字SetName("Thread", this); // default nameif (do_init) {DoInit();}
}void Thread::DoInit() {if (fInitialized_) {return;}fInitialized_ = true;//把当前线程的this指针对象传给ThreadManagerThreadManager::Add(this);
}
//ThreadManager会把当前线程,放到一个 message_queues_ 中统一管理
void ThreadManager::AddInternal(Thread* message_queue) {CritScope cs(&crit_);// Prevent changes while the list of message queues is processed.RTC_DCHECK_EQ(processing_, 0);message_queues_.push_back(message_queue);
}
引入了一个新的对象 ThreadManager
//ThreadManager是线程管理类,是一个单例,
//保存创建的所有线程对象
class RTC_EXPORT ThreadManager {// Singleton, constructor and destructor are private.static ThreadManager* Instance();//保存线程的消息队列,其实是个vector,不是queue。//很多服务都喜欢用vector代替queue,srs也是把vector当queue用// This list contains all live Threads.std::vector<Thread*> message_queues_ RTC_GUARDED_BY(crit_);}
//创建单例 ThreadManager,饿汉模式
ThreadManager* ThreadManager::Instance() {static ThreadManager* const thread_manager = new ThreadManager();return thread_manager;
}
//把线程指针加入到消息队列中
void ThreadManager::Add(Thread* message_queue) {return Instance()->AddInternal(message_queue);
}
void ThreadManager::AddInternal(Thread* message_queue) {CritScope cs(&crit_);// Prevent changes while the list of message queues is processed.RTC_DCHECK_EQ(processing_, 0);message_queues_.push_back(message_queue);
}
线程创建过程
线程的Start()函数才是真正创建线程的地方,只看android(即linux)端。
具体的实现是用的pthread,而没有用标准的std::thread
bool Thread::Start() {pthread_attr_t attr;pthread_attr_init(&attr);//创建线程调用的是pthread_create,//并传入线程函数 PreRunint error_code = pthread_create(&thread_, &attr, PreRun, this);if (0 != error_code) {RTC_LOG(LS_ERROR) << "Unable to create pthread, error " << error_code;thread_ = 0;return false;}
}void* Thread::PreRun(void* pv) {Thread* thread = static_cast<Thread*>(pv);ThreadManager::Instance()->SetCurrentThread(thread);rtc::SetCurrentThreadName(thread->name_.c_str());//调用一个Run()函数thread->Run();}void Thread::Run()
{
// Forever 模式,一直轮训处理ProcessMessages(kForever);
}
//真正处理消息的函数,下文会详细介绍
bool Thread::ProcessMessages(int cmsLoop)
{while (true) {Message msg;// Get()函数从消息队列中取消息 if (!Get(&msg, cmsNext))return !IsQuitting();//取出消息后调用Dispatch()进行处理Dispatch(&msg);if (cmsLoop != kForever){cmsNext = static_cast<int>(TimeUntil(msEnd));if (cmsNext < 0)return true;}} }
向线程中投递消息
// |time_sensitive| is deprecated and should always be false.virtual void Post(const Location& posted_from,//是从哪个函数向线程中投递消息MessageHandler* phandler,//消息处理的类,一般是向线程抛消息的类的this指针,当线程轮训到该消息时通过该this指针再回调对应的处理函数uint32_t id = 0,//消息idMessageData* pdata = nullptr, //消息体bool time_sensitive = false);//废弃的参数virtual void PostDelayed(const Location& posted_from, //支持向线程抛入延迟消息int delay_ms,MessageHandler* phandler,uint32_t id = 0,MessageData* pdata = nullptr);virtual void PostAt(const Location& posted_from, int64_t run_at_ms,MessageHandler* phandler,uint32_t id = 0,MessageData* pdata = nullptr);// 看下Post的具体实现void Thread::Post(const Location& posted_from,MessageHandler* phandler,uint32_t id,MessageData* pdata,bool time_sensitive) {RTC_DCHECK(!time_sensitive);if (IsQuitting()) {delete pdata;return;}// Keep thread safe// Add the message to the end of the queue// Signal for the multiplexer to return{//注意这个大括号哈//数据进队列加锁,内部用的 pthread_mutex_lock(mutex_)//CritScope对 mutex_进行了封装,构造函数加锁、析构函数解锁CritScope cs(&crit_);Message msg;//构造消息体msg.posted_from = posted_from;msg.phandler = phandler;msg.message_id = id;msg.pdata = pdata;messages_.push_back(msg);}//CritScope退出作用区域后,调用对应的析构函数解锁//即pthread_mutex_unlock(&mutex_);函数//这种实现方式一方面缩小了锁的范围,锁的范围仅仅局限于大括号内部,而不是整个Post()函数//同时,退出临界区后自动调用析构函数释放锁,也避免了死锁的可能性//这个WakeUp* 函数是重点,它会唤醒当前等待的线程WakeUpSocketServer();
}
//看一下 WakeUpSocketServer()的实现
//最终是通过 pthread_cond_broadcast()
//唤醒当前所有处于pthread_cond_wait()的线程void Thread::WakeUpSocketServer() {ss_->WakeUp();
}
void NullSocketServer::WakeUp() {event_.Set();
} void Event::Set() {pthread_mutex_lock(&event_mutex_);event_status_ = true;//广播唤醒所有处于 pthread_cond_wait()的线程pthread_cond_broadcast(&event_cond_);pthread_mutex_unlock(&event_mutex_);
}
从消息队列中取消息的具体实现
//消息处理是从 Thread 的Run()函数开始
void Thread::Run() {// KForever字段,一直轮训取数据,//没有数据时会 wait() 阻塞等待ProcessMessages(kForever);
}
bool Thread::ProcessMessages(int cmsLoop) {int cmsNext = cmsLoop;while (true) {Message msg;//从消息队列中取消,//取出来后交给 Dispatch()进行处理if (!Get(&msg, cmsNext))return !IsQuitting();Dispatch(&msg);if (cmsLoop != kForever) {cmsNext = static_cast<int>(TimeUntil(msEnd));if (cmsNext < 0)return true;}}
}
//取消息的过程
bool Thread::Get(Message* pmsg, int cmsWait, bool process_io) {// Return and clear peek if present// Always return the peek if it exists so there is Peek/Get symmetryif (fPeekKeep_) {*pmsg = msgPeek_;fPeekKeep_ = false;return true;}// Get w/wait + timer scan / dispatch + socket / event multiplexer dispatchint64_t cmsTotal = cmsWait;int64_t cmsElapsed = 0;int64_t msStart = TimeMillis();int64_t msCurrent = msStart;while (true) {// Check for posted eventsint64_t cmsDelayNext = kForever; //一直训练bool first_pass = true;//具体实现是两层while(true)。内部的while负责取消息,//取不到时,外部while负责wait()阻塞等待while (true) {// All queue operations need to be locked, but nothing else in this loop// (specifically handling disposed message) can happen inside the crit.// Otherwise, disposed MessageHandlers will cause deadlocks.{//和像线程中投递消息类似,取消息时也先加锁CritScope cs(&crit_);// On the first pass, check for delayed messages that have been// triggered and calculate the next trigger time.if (first_pass) {//线程被唤醒后,只从延时队列中取一次//并且这一次会把所有到时需要处理的延时消息取完,//取出的延时消息放到messages_队列和普通消息一样进行处理first_pass = false;while (!delayed_messages_.empty()) {//当前时间,小于延时队列中第一条消息时间,//说明还没有到需要处理延时消息的时间,if (msCurrent < delayed_messages_.top().run_time_ms_) {//cmsDelayNext计算出需要等待的时间,//也是后面线程wait()时需要等待的最大时间,//因为到了这个时间,即便没有普通消息到来//延时队列中的消息也到时间需要处理了cmsDelayNext =TimeDiff(delayed_messages_.top().run_time_ms_, msCurrent);break;}//把到时需要处理的延时消息,放到普通队列中一起处理messages_.push_back(delayed_messages_.top().msg_);//延时消息出队列delayed_messages_.pop();}}// Pull a message off the message queue, if available.if (messages_.empty()) {break;} else {//真正获得需要处理消息的地方*pmsg = messages_.front();messages_.pop_front();}} // crit_ is released here.// If this was a dispose message, delete it and skip it.//如果是dispose废除的消息就会删除,//然后 continue()继续去取if (MQID_DISPOSE == pmsg->message_id) {RTC_DCHECK(nullptr == pmsg->phandler);delete pmsg->pdata;*pmsg = Message();continue;}//如果是需要处理的消息就return退出当前 Get()函数,//进行后面的Disptch()处理return true;}if (IsQuitting())break;// Which is shorter, the delay wait or the asked wait?int64_t cmsNext;if (cmsWait == kForever) {cmsNext = cmsDelayNext;} else {cmsNext = std::max<int64_t>(0, cmsTotal - cmsElapsed);if ((cmsDelayNext != kForever) && (cmsDelayNext < cmsNext))cmsNext = cmsDelayNext;}// 如果延时消息队列和普通的消息队列中都没有消息,//内部while(true)会调用 break退出//然后就调用到这里,因为我们是 KForever一直轮训模式,//所以当队列中没有消息时,防止一直遍历查询,//会通过wait()挂起当前线程让出时间片{// Wait and multiplex in the meantime//内部调用的是 pthread_cond_wait,//并且在wait()时也加了锁if (!ss_->Wait(static_cast<int>(cmsNext), process_io))return false;}// If the specified timeout expired, returnmsCurrent = TimeMillis();cmsElapsed = TimeDiff(msCurrent, msStart);if (cmsWait != kForever) {if (cmsElapsed >= cmsWait)return false;}}return false;
}
处理线程消息
从消息队列中Get()获取消息后,会调用 Dispatch()处理消息。具体实现就是回调向线程中抛消息的类的OnMessage(pmg)函数,然后进行具体消息的处理:
void Thread::Dispatch(Message* pmsg) {TRACE_EVENT2("webrtc", "Thread::Dispatch", "src_file",pmsg->posted_from.file_name(), "src_func",pmsg->posted_from.function_name());int64_t start_time = TimeMillis();//回调对应OnMessage(pmsg)函数进行消息处理pmsg->phandler->OnMessage(pmsg);int64_t end_time = TimeMillis();int64_t diff = TimeDiff(end_time, start_time);if (diff >= kSlowDispatchLoggingThreshold) {RTC_LOG(LS_INFO) << "Message took " << diff<< "ms to dispatch. Posted from: "<< pmsg->posted_from.ToString();}
}
而我们的处理类继承 rtc::MessageHandler,并实现了 OnMessage()函数,就可以基于对应的MessageID类型,处理不同的消息了
CVideoThread::OnMessage(rtc::Message* msg) {switch case:Message_id:handlerMessage();case VIDEO_INFO: //假如向线程中传入了 MessageData,//在线程回调时会把这个消息体带出来方便我们处理if(msg->pdata){rtc::TypedMessageData<VideoMessageData>* data = static_cast<rtc::TypedMessageData<VideoMessageData>*>(msg->pdata);string message = data->data();delete data;data = nullptr;}default:break;
}
以上就是webrtc的线程模块了,下一篇会介绍webrtc的 TaskQueue 任务队列