SIFT算法原理:SIFT算法详细介绍

前面我们介绍了Harris和Shi-Tomasi角点检测算法,这两种算法具有旋转不变性,但不具有尺度不变性,以下图为例,在左侧小图中可以检测到角点,但是图像被放大后,在使用同样的窗口,就检测不到角点了。

SIFT算法01

所以,下面我们来介绍一种计算机视觉的算法,尺度不变特征转换即SIFT (Scale-invariant feature transform)。它用来侦测与描述影像中的局部性特征,它在空间尺度中寻找极值点,并提取出其位置、尺度、旋转不变量,此算法由 David Lowe在1999年所发表,2004年完善总结。应用范围包含物体辨识、机器人地图感知与导航、影像缝合、3D模型建立、手势辨识、影像追踪和动作比对等领域。

SIFT算法的实质是在不同的尺度空间上查找关键点(特征点),并计算出关键点的方向。SIFT所查找到的关键点是一些十分突出,不会因光照,仿射变换和噪音等因素而变化的点,如角点、边缘点、暗区的亮点及亮区的暗点等。

1.1 基本流程

Lowe将SIFT算法分解为如下四步:

尺度空间极值检测:搜索所有尺度上的图像位置。通过高斯差分函数来识别潜在的对于尺度和旋转不变的关键点。

关键点定位:在每个候选的位置上,通过一个拟合精细的模型来确定位置和尺度。关键点的选择依据于它们的稳定程度。

关键点方向确定:基于图像局部的梯度方向,分配给每个关键点位置一个或多个方向。所有后面的对图像数据的操作都相对于关键点的方向、尺度和位置进行变换,从而保证了对于这些变换的不变性。

关键点描述:在每个关键点周围的邻域内,在选定的尺度上测量图像局部的梯度。这些梯度作为关键点的描述符,它允许比较大的局部形状的变形或光照变化。

我们就沿着Lowe的步骤,对SIFT算法的实现过程进行介绍:

1.2 尺度空间极值检测

在不同的尺度空间是不能使用相同的窗口检测极值点,对小的关键点使用小的窗口,对大的关键点使用大的窗口,为了达到上述目的,我们使用尺度空间滤波器。

高斯核是唯一可以产生多尺度空间的核函数。-《Scale-space theory: A basic tool for analysing structures at different scales》。

一个图像的尺度空间L(x,y,σ),定义为原始图像I(x,y)与一个可变尺度的2维高斯函数G(x,y,σ)卷积运算 ,即:
在这里插入图片描述
其中:
在这里插入图片描述

σ是尺度空间因子,它决定了图像的模糊的程度。在大尺度下(σ值大)表现的是图像的概貌信息,在小尺度下(σ值小)表现的是图像的细节信息。

在计算高斯函数的离散近似时,在大概3σ距离之外的像素都可以看作不起作用,这些像素的计算也就可以忽略。所以,在实际应用中,只计算(6σ+1)*(6σ+1)的高斯卷积核就可以保证相关像素影响。

下面我们构建图像的高斯金字塔,它采用高斯函数对图像进行模糊以及降采样处理得到的,高斯金字塔构建过程中,首先将图像扩大一倍,在扩大的图像的基础之上构建高斯金字塔,然后对该尺寸下图像进行高斯模糊,几幅模糊之后的图像集合构成了一个Octave,然后对该Octave下选择一幅图像进行下采样,长和宽分别缩短一倍,图像面积变为原来四分之一。这幅图像就是下一个Octave的初始图像,在初始图像的基础上完成属于这个Octave的高斯模糊处理,以此类推完成整个算法所需要的所有八度构建,这样这个高斯金字塔就构建出来了,整个流程如下图所示:

SIFT原理02

利用LoG(高斯拉普拉斯方法),即图像的二阶导数,可以在不同的尺度下检测图像的关键点信息,从而确定图像的特征点。但LoG的计算量大,效率低。所以我们通过两个相邻高斯尺度空间的图像的相减,得到DoG(高斯差分)来近似LoG。

为了计算DoG我们构建高斯差分金字塔,该金字塔是在上述的高斯金字塔的基础上构建而成的,建立过程是:在高斯金字塔中每个Octave中相邻两层相减就构成了高斯差分金字塔。如下图所示:

SIFT算法03

高斯差分金字塔的第1组第1层是由高斯金字塔的第1组第2层减第1组第1层得到的。以此类推,逐组逐层生成每一个差分图像,所有差分图像构成差分金字塔。概括为DOG金字塔的第o组第l层图像是有高斯金字塔的第o组第l+1层减第o组第l层得到的。后续Sift特征点的提取都是在DOG金字塔上进行的

在 DoG 搞定之后,就可以在不同的尺度空间中搜索局部最大值了。对于图像中的一个像素点而言,它需要与自己周围的 8 邻域,以及尺度空间中上下两层中的相邻的 18(2x9)个点相比。如果是局部最大值,它就可能是一个关键点。基本上来说关键点是图像在相应尺度空间中的最好代表。如下图所示:

SIFT算法03

搜索过程从每组的第二层开始,以第二层为当前层,对第二层的DoG图像中的每个点取一个3×3的立方体,立方体上下层为第一层与第三层。这样,搜索得到的极值点既有位置坐标(DoG的图像坐标),又有空间尺度坐标(层坐标)。当第二层搜索完成后,再以第三层作为当前层,其过程与第二层的搜索类似。当S=3时,每组里面要搜索3层,所以在DOG中就有S+2层,在初使构建的金字塔中每组有S+3层。

1.3 关键点定位

由于DoG对噪声和边缘比较敏感,因此在上面高斯差分金字塔中检测到的局部极值点需经过进一步的检验才能精确定位为特征点。

使用尺度空间的泰勒级数展开来获得极值的准确位置, 如果极值点的 灰度值小于阈值(一般为0.03或0.04)就会被忽略掉。 在 OpenCV 中这种阈值被称为 contrastThreshold。

DoG 算法对边界非常敏感, 所以我们必须要把边界去除。 Harris 算法除了可以用于角点检测之外还可以用于检测边界。从 Harris 角点检测的算法中,当一个特征值远远大于另外一个特征值时检测到的是边界。那在DoG算法中欠佳的关键点在平行边缘的方向有较大的主曲率,而在垂直于边缘的方向有较小的曲率,两者的比值如果高于某个阈值(在OpenCV中叫做边界阈值),就认为该关键点为边界,将被忽略,一般将该阈值设置为10。

将低对比度和边界的关键点去除,得到的就是我们感兴趣的关键点。

1.4 关键点方向确定

经过上述两个步骤,图像的关键点就完全找到了,这些关键点具有尺度不变性。为了实现旋转不变性,还需要为每个关键点分配一个方向角度,也就是根据检测到的关键点所在高斯尺度图像的邻域结构中求得一个方向基准。

对于任一关键点,我们采集其所在高斯金字塔图像以r为半径的区域内所有像素的梯度特征(幅值和幅角),半径r为:

r=3×1.5σ

其中σ是关键点所在octave的图像的尺度,可以得到对应的尺度图像。

梯度的幅值和方向的计算公式为:

θ(x,y)=arctan(
L(x+1,y)−L(x−1),y
L(x,y+1)−L(x,y−1)
)

邻域像素梯度的计算结果如下图所示:

SIFT算法05

完成关键点梯度计算后,使用直方图统计关键点邻域内像素的梯度幅值和方向。具体做法是,将360°分为36柱,每10°为一柱,然后在以r为半径的区域内,将梯度方向在某一个柱内的像素找出来,然后将他们的幅值相加在一起作为柱的高度。因为在r为半径的区域内像素的梯度幅值对中心像素的贡献是不同的,因此还需要对幅值进行加权处理,采用高斯加权,方差为1.5σ。如下图所示,为简化图中只画了8个方向的直方图。

SIFT算法06

每个特征点必须分配一个主方向,还需要一个或多个辅方向,增加辅方向的目的是为了增强图像匹配的鲁棒性。辅方向的定义是,当一个柱体的高度大于主方向柱体高度的80%时,则该柱体所代表的的方向就是给特征点的辅方向。

直方图的峰值,即最高的柱代表的方向是特征点邻域范围内图像梯度的主方向,但该柱体代表的角度是一个范围,所以我们还要对离散的直方图进行插值拟合,以得到更精确的方向角度值。利用抛物线对离散的直方图进行拟合,如下图所示:

SIFT算法07

获得图像关键点主方向后,每个关键点有三个信息(x,y,σ,θ):位置、尺度、方向。由此我们可以确定一个SIFT特征区域。通常使用一个带箭头的圆或直接使用箭头表示SIFT区域的三个值:中心表示特征点位置,半径表示关键点尺度,箭头表示方向。如下图所示:

SIFT算法08

1.5 关键点描述

通过以上步骤,每个关键点就被分配了位置,尺度和方向信息。接下来我们为每个关键点建立一个描述符,该描述符既具有可区分性,又具有对某些变量的不变性,如光照,视角等。而且描述符不仅仅包含关键点,也包括关键点周围对其有贡献的的像素点。主要思路就是通过将关键点周围图像区域分块,计算块内的梯度直方图,生成具有特征向量,对图像信息进行抽象。

描述符与特征点所在的尺度有关,所以我们在关键点所在的高斯尺度图像上生成对应的描述符。以特征点为中心,将其附近邻域划分为 d∗d 个子区域(一般取d=4),每个子区域都是一个正方形,边长为3σ,考虑到实际计算时,需进行三次线性插值,所以特征点邻域的为 3σ(d+1)∗3σ(d+1) 的范围,如下图所示:

SIFT算法09

为了保证特征点的旋转不变性,以特征点为中心,将坐标轴旋转为关键点的主方向,如下图所示:

SIFT算法10

计算子区域内的像素的梯度,并按照σ=0.5d进行高斯加权,然后插值计算得到每个种子点的八个方向的梯度,插值方法如下图所示:

SIFT算法11

每个种子点的梯度都是由覆盖其的4个子区域插值而得的。如图中的红色点,落在第0行和第1行之间,对这两行都有贡献。对第0行第3列种子点的贡献因子为dr,对第1行第3列的贡献因子为1-dr,同理,对邻近两列的贡献因子为dc和1-dc,对邻近两个方向的贡献因子为do和1-do。则最终累加在每个方向上的梯度大小为:
在这里插入图片描述

其中k,m,n为0或为1。 如上统计 4∗4∗8=128 个梯度信息即为该关键点的特征向量,按照特征点的对每个关键点的特征向量进行排序,就得到了SIFT特征描述向量。

1.6 总结

SIFT在图像的不变特征提取方面拥有无与伦比的优势,但并不完美,仍然存在实时性不高,有时特征点较少,对边缘光滑的目标无法准确提取特征点等缺陷,自SIFT算法问世以来,人们就一直对其进行优化和改进,其中最著名的就是SURF算法。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/20501.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

Excel技巧 - 管理规则设置一行变色

如何设置某一列单元格的值大于一个值时,该单元格所在的一整行都变色呢? 1、先框选内容区域,点击开始,条件格式,新建规则 2、如果销量大于20,则该行都变为绿色 编辑格式选择:使用公式确定要设置…

【MySQL】存储过程(十一)

🚗MySQL学习第十一站~ 🚩本文已收录至专栏:MySQL通关路 ❤️文末附全文思维导图,感谢各位点赞收藏支持~ 一.引入 存储过程是事先经过编译并存储在数据库中的一段 SQL 语句的集合,调用存储过程可以简化应用开发人员的工作,可以减少数据在数据库和应用服务器之间的传输,…

大数据技术之Clickhouse---入门篇---SQL操作、副本

星光下的赶路人star的个人主页 积一勺以成江河,累微尘以崇峻极 文章目录 1、SQL操作1.1 Insert1.2 Update 和 Delete1.3 查询操作1.4 alter操作1.5 导出数据 2、副本2.1 副本写入流程2.2 配置步骤 1、SQL操作 基本上来说传统关系型数据库(以 MySQL 为例…

【雕爷学编程】MicroPython动手做(30)——物联网之Blynk 4

知识点:什么是掌控板? 掌控板是一块普及STEAM创客教育、人工智能教育、机器人编程教育的开源智能硬件。它集成ESP-32高性能双核芯片,支持WiFi和蓝牙双模通信,可作为物联网节点,实现物联网应用。同时掌控板上集成了OLED…

phpstudy 进行 composer 全局配置

背景 因为注意到,使用 phpStudy 进行环境搭建时,有时需要使用 composer 每次都需要查找资料进行配置, 在此进行记录笔记,方便有需要的道友借鉴 配置 版本:composer1.8.5(phpStudy8 当前只能安装这一个版本…

Flink作业调度的9种状态

1.什么是作业调度 Flink 通过 Task Slots 来定义执行资源。每个 TaskManager 有一到多个 task slot,每个 task slot 可以运行一条由多个并行 task 组成的流水线。 这样一条流水线由多个连续的 task 组成,比如并行度为 n 的 MapFunction 和 并行度为 n 的…

省份数量(力扣)深度优先 JAVA

有 n 个城市,其中一些彼此相连,另一些没有相连。如果城市 a 与城市 b 直接相连,且城市 b 与城市 c 直接相连,那么城市 a 与城市c 间接相连。 省份 是一组直接或间接相连的城市,组内不含其他没有相连的城市。 给你一个 …

作为一个老程序员,想对新人说什么?

前言 最近知乎上,有一位大佬邀请我回答下面这个问题,看到这个问题我百感交集,感触颇多。 在我是新人时,如果有前辈能够指导方向一下,分享一些踩坑经历,或许会让我少走很多弯路,节省更多的学习的…

CNVD-2023-12632 泛微e-cology9 sql注入 附poc

目录 漏洞描述影响版本漏洞复现漏洞修复 众亦信安,中意你啊! 微信搜索:众亦信安,回复关键字:230317 领批量检测脚本。 声明:文中涉及到的技术和工具,仅供学习使用,禁止从事任何非法…

汽车智能化再掀新热潮!「中央计算架构」进入规模量产周期

中央计算区域控制的新一代整车电子架构,已经成为车企继电动化、智能化(功能上车)之后,新一轮竞争的焦点。 如果说智能化的1.0阶段,是智能驾驶智能座舱的争夺战;那么,即将进入的2.0阶段&#xff…

黑马大数据学习笔记3-MapReduce配置和YARN部署以及基本命令

目录 部署说明MapReduce配置文件YARN配置文件分发配置文件集群启动命令开始启动YARN集群 查看YARN的WEB UI页面保存快照YARN集群的启停命令一键启动脚本单进程启停 提交MapReduce任务到YARN执行提交wordcount示例程序查看运行日志提交求圆周率示例程序 p41~43 https://www.bili…

IntelliJ IDEA快捷键大全 + 动图演示!

一、构建/编译 Ctrl F9:构建项目该快捷键,等同于菜单【Build】—>【Build Project】 执行该命令后,IntelliJ IDEA 会编译项目中所有类,并将编译结果输出到out目录中。IntelliJ IDEA 支持增量构建,会在上次构建的基…

ES6之Promise、Class类与模块化(Modules)

目录 PromiseClass类extendssuper Modules 模块系统export default 和对应importexport 和 import Promise Promise 是 ES6 引入的一种用于处理异步操作的对象。 它解决了传统回调函数(callback)模式中容易出现的回调地狱和代码可读性差的问题。 Promis…

MySQL binLog问题

看到数据库目录下有很多OFF.*文件的时候很诧异,这玩意是啥,binlog不应该都是*bin-log.*​的文件吗?* [roottest ~]# cd /data/mysql_data [roottest mysql_data]# ls ansible hap_attach_yl hap_func_yl hap_msg_yl h…

ThreadPoolExecutor详解(上)

为什么会有线程池? 如果客户端发一个请求,服务端就创建一个线程接收请求,线程资源是有限的,而且创建一个线程和执行结束之后都要调用操作系统资源销毁线程,这样频繁操作肯定非常占用cpu和内存资源,线程池的…

改进粒子群算法优化BP神经网络---回归+分类两种案例

今天采用改进的粒子群算法(LPSO)优化算法优化BP神经网络。本文选用的LPSO算法是之前作者写过的一篇文章:基于改进莱维飞行和混沌映射(10种混沌映射随意切换)的粒子群优化算法,附matlab代码 文章一次性讲解两种案例,回归…

shiro快速入门

文章目录 权限管理什么是权限管理?什么是身份认证?什么是授权? 什么是shiro?shiro的核心架构shiro中的三个核心组件 shiro中的认证shiro中的授权shiro使用默认Ehcache实现缓存shiro使用redis作为缓存实现 权限管理 什么是权限管理…

Express中间件

1.创建最基本的中间件 const express require(express); const send require(send);const app express()const mw function (req, res, next) {console.log(middleware);// 一定要调用next() 把流转关系交给下一个中间件或路由next() }app.listen(80, () > {console.l…

SpringBoot —程序包org.springframework.boot.test.context不存在

一. 遇到问题 &#xff1a;程序包org.springframework.boot.test.context不存在 发生错误的原因是项目中缺少spring-boot-starter-test依赖导致的&#xff0c;解决方案如下: 在项目根目录的pom.xm文件中的<dependencies>节点下增加以下依赖即可&#xff1a; <depen…

uniApp 插件 Fvv-UniSerialPort 使用实例

接上一篇 uniApp 对接安卓平板刷卡器, 读取串口数据 , 本文将详细介绍如何使用插件读取到串口数据 原理 通过uniApp 插件读取设备串口数据, 解析后供业务使用; 步骤 创建uniApp 项目;添加插件 安卓串口通信 Fvv-UniSerialPort 安卓串口通信 Fvv-UniSerialPort - DCloud 插件…