[足式机器人]Part4 南科大高等机器人控制课 Ch02 Rigid Body Configuration and Velocity

本文仅供学习使用
本文参考:
B站:CLEAR_LAB
笔者带更新-运动学
课程主讲教师:
Prof. Wei Zhang

南科大高等机器人控制课 Ch02 Rigid Body Configuration and Velocity

  • 1. Rigid Body Configuration
    • 1.1 Special Orthogonal Group
    • 1.2 Use of Rotation Matrix
    • 1.3 Homogeneous Transformation Matrix
  • 2. Rigid Body Velocity(Twist)
    • 2.1 Rigid Body Velocity: Spatial Velocity (Twist)
    • 2.2 Spatial Velocity Representation in a Reference Frame
    • 2.3 Change Reference Frame for Twist
  • 3. Geometric Aspect of Twist: Screw Motion
    • 3.1 Screw Motion : Definition
    • 3.2 From Screw Motion to Twist
    • 3.3 From Twist to Screw Motion
    • 3.4 Screw Reoersentation of a Twist
  • 4. Extra Note : Tutorial on Twist/spatial Velocity and Screw Axis
    • 4.1 What is Spatial Velocity and Twist
    • 4.2 What is Screw Motion and Axis?


1. Rigid Body Configuration

  • Free Vector

Free Vector: geometric quantity with length and direction

Given a reference frame, v ⃗ \vec{v} v can be move to a position such that the base of the arrow is at the origin without changing the orientation. Then the vector v ⃗ \vec{v} v can be represented by its coordinates v ⃗ \vec{v} v in the reference frame

v ⃗ \vec{v} v donated the physical quantity while v ⃗ A \vec{v}^A v A donate its coordinate wrt frame { A } \left\{ A \right\} {A}

Frame: coordinate system based on basis vectors—— { A : i ^ A , j ^ A , k ^ A } \left\{ A:\hat{i}^A,\hat{j}^A,\hat{k}^A \right\} {A:i^A,j^A,k^A}——3 coordinate vectors (unit length) i ^ A , j ^ A , k ^ A \hat{i}^A,\hat{j}^A,\hat{k}^A i^A,j^A,k^A and an origin

i ^ A , j ^ A , k ^ A \hat{i}^A,\hat{j}^A,\hat{k}^A i^A,j^A,k^A mutually orthogonal
i ^ A × j ^ A = k ^ A \hat{i}^A\times \hat{j}^A=\hat{k}^A i^A×j^A=k^A——right hand rule

  • Point

Point : p p p denotes a point in the physical space

{ A } \left\{ A \right\} {A} point p p p can be represented by a vector from frame origin to p p p
R ⃗ P A \vec{R}_{\mathrm{P}}^{A} R PA denotes the coordinate of a point p p p wrt frame { A } \left\{ A \right\} {A}

此处使用了笔者习惯的表达方式,所以并不会出现不同坐标系下表达的向量不可相加的情况(本质并非坐标参数的相加),这种表达方式很多,本质都是为了简化直观向量表达的同时不产生歧义

  • Cross Product

Cross Product or vector product of a ⃗ ∈ R 3 , b ⃗ ∈ R 3 \vec{a}\in \mathbb{R} ^3,\vec{b}\in \mathbb{R} ^3 a R3,b R3 is defined as
a ⃗ × b ⃗ = [ I ^ J ^ K ^ ] T [ a 2 b 3 − a 3 b 2 a 3 b 1 − a 1 b 3 a 1 b 2 − a 2 b 1 ] = [ I ^ J ^ K ^ ] T [ 0 − a 3 a 2 a 3 0 − a 1 − a 2 a 1 0 ] [ b 1 b 2 b 3 ] = [ I ^ J ^ K ^ ] T a ⃗ ~ [ b 1 b 2 b 3 ] \vec{a}\times \vec{b}=\left[ \begin{array}{c} \hat{I}\\ \hat{J}\\ \hat{K}\\ \end{array} \right] ^{\mathrm{T}}\left[ \begin{array}{c} a_2b_3-a_3b_2\\ a_3b_1-a_1b_3\\ a_1b_2-a_2b_1\\ \end{array} \right] =\left[ \begin{array}{c} \hat{I}\\ \hat{J}\\ \hat{K}\\ \end{array} \right] ^{\mathrm{T}}\left[ \begin{matrix} 0& -a_3& a_2\\ a_3& 0& -a_1\\ -a_2& a_1& 0\\ \end{matrix} \right] \left[ \begin{array}{c} b_1\\ b_2\\ b_3\\ \end{array} \right] =\left[ \begin{array}{c} \hat{I}\\ \hat{J}\\ \hat{K}\\ \end{array} \right] ^{\mathrm{T}}\tilde{\vec{a}}\left[ \begin{array}{c} b_1\\ b_2\\ b_3\\ \end{array} \right] a ×b = I^J^K^ T a2b3a3b2a3b1a1b3a1b2a2b1 = I^J^K^ T 0a3a2a30a1a2a10 b1b2b3 = I^J^K^ Ta ~ b1b2b3

a ⃗ ~ = − a ⃗ ~ T \tilde{\vec{a}}=-\tilde{\vec{a}}^{\mathrm{T}} a ~=a ~T (called skew stmmetric)
a ⃗ ~ b ⃗ ~ − b ⃗ ~ a ⃗ ~ = a ⃗ × b ⃗ ~ \tilde{\vec{a}}\tilde{\vec{b}}-\tilde{\vec{b}}\tilde{\vec{a}}=\widetilde{\vec{a}\times \vec{b}} a ~b ~b ~a ~=a ×b Jocabi’s Idenetity

  • Rotation Matrix

Rotation Matrix: specifies orientation of one frame relative to another

A valid rotation matrx [ Q B A ] \left[ Q_{\mathrm{B}}^{A} \right] [QBA] satisfies : [ Q B A ] [ Q B A ] T = E , det ⁡ ( [ Q B A ] ) = 1 \left[ Q_{\mathrm{B}}^{A} \right] \left[ Q_{\mathrm{B}}^{A} \right] ^{\mathrm{T}}=E,\det \left( \left[ Q_{\mathrm{B}}^{A} \right] \right) =1 [QBA][QBA]T=E,det([QBA])=1

1.1 Special Orthogonal Group

Special Orthogonal Group : Space of Rotation Matrices in R n \mathbb{R} ^n Rn is defined as
S O ( n ) = { [ Q B A ] ∈ R n × n : [ Q B A ] [ Q B A ] T = E , det ⁡ ( [ Q B A ] ) = 1 } SO\left( n \right) =\left\{ \left[ Q_{\mathrm{B}}^{A} \right] \in \mathbb{R} ^{n\times n}:\left[ Q_{\mathrm{B}}^{A} \right] \left[ Q_{\mathrm{B}}^{A} \right] ^{\mathrm{T}}=E,\det \left( \left[ Q_{\mathrm{B}}^{A} \right] \right) =1 \right\} SO(n)={[QBA]Rn×n:[QBA][QBA]T=E,det([QBA])=1}

S O ( n ) SO\left( n \right) SO(n) is a group. We are primarily interested in S O ( 3 ) SO\left( 3 \right) SO(3) and S O ( 2 ) SO\left( 2 \right) SO(2), rotation groups of R 3 \mathbb{R} ^3 R3 and R 2 \mathbb{R} ^2 R2 , respectively.

Group is a set G G G, together with an operation ∙ \bullet , satisfying the following group axioms/'æksɪəm/公理:

  • Closure: a ∈ G , b ∈ G ⇒ a ∙ b ∈ G a\in G,b\in G\Rightarrow a\bullet b\in G aG,bGabG
  • Assocaitivity: ( a ∙ b ) ∙ c = a ∙ ( b ∙ c ) , ∀ a , b , c ∈ G \left( a\bullet b \right) \bullet c=a\bullet \left( b\bullet c \right) ,\forall a,b,c\in G (ab)c=a(bc),a,b,cG
  • Identity element: ∃ e ∈ G \exists e\in G eG such that e ∙ a = a e\bullet a=a ea=a , for all a ∈ G a\in G aG
  • Inverse element: For each a ∈ G a\in G aG, there is a b ∈ G b\in G bG such that a ∙ b = b ∙ a = e a\bullet b=b\bullet a=e ab=ba=e, where e e e is the identity element

1.2 Use of Rotation Matrix

  • Representing an orientation —— from definition
    将原矢量进行旋转变换,得到该坐标系下新矢量的坐标投影参数:
    R ⃗ p ′ F = [ Q B A ] R ⃗ p F \vec{R}_{\mathrm{p}^{\prime}}^{F}=\left[ Q_{\mathrm{B}}^{A} \right] \vec{R}_{\mathrm{p}}^{F} R pF=[QBA]R pF
  • Changing the reference frame
    对坐标系进行转换,基于坐标系 { B } \left\{ B \right\} {B}中的该矢量的坐标投影参数 R ⃗ p B \vec{R}_{\mathrm{p}}^{B} R pB,得到该矢量在坐标系 { A } \left\{ A \right\} {A}中的坐标投影参数 R ⃗ p A \vec{R}_{\mathrm{p}}^{A} R pA
    R ⃗ p A = [ Q B A ] R ⃗ p B \vec{R}_{\mathrm{p}}^{A}=\left[ Q_{\mathrm{B}}^{A} \right] \vec{R}_{\mathrm{p}}^{B} R pA=[QBA]R pB

[ i ⃗ B j ⃗ B k ⃗ B ] T [ P 1 B P 2 B P 3 B ] = [ i ⃗ A j ⃗ A k ⃗ A ] T [ P 1 A P 2 A P 3 A ] ⇒ ( [ Q B A ] T [ i ⃗ A j ⃗ A k ⃗ A ] ) T [ P 1 B P 2 B P 3 B ] = [ i ⃗ A j ⃗ A k ⃗ A ] T [ P 1 A P 2 A P 3 A ] ⇒ [ i ⃗ A j ⃗ A k ⃗ A ] T [ Q B A ] [ P 1 B P 2 B P 3 B ] = [ i ⃗ A j ⃗ A k ⃗ A ] T [ P 1 A P 2 A P 3 A ] ⇒ [ Q B A ] [ P 1 B P 2 B P 3 B ] = [ P 1 A P 2 A P 3 A ] = [ P ′ 1 B P ′ 2 B P ′ 3 B ] \left[ \begin{array}{c} \vec{i}^B\\ \vec{j}^B\\ \vec{k}^B\\ \end{array} \right] ^{\mathrm{T}}\left[ \begin{array}{c} P_{1}^{\mathrm{B}}\\ P_{2}^{\mathrm{B}}\\ P_{3}^{\mathrm{B}}\\ \end{array} \right] =\left[ \begin{array}{c} \vec{i}^A\\ \vec{j}^A\\ \vec{k}^A\\ \end{array} \right] ^{\mathrm{T}}\left[ \begin{array}{c} P_{1}^{A}\\ P_{2}^{A}\\ P_{3}^{A}\\ \end{array} \right] \\ \Rightarrow \left( \left[ Q_{\mathrm{B}}^{A} \right] ^{\mathrm{T}}\left[ \begin{array}{c} \vec{i}^A\\ \vec{j}^A\\ \vec{k}^A\\ \end{array} \right] \right) ^{\mathrm{T}}\left[ \begin{array}{c} P_{1}^{\mathrm{B}}\\ P_{2}^{\mathrm{B}}\\ P_{3}^{\mathrm{B}}\\ \end{array} \right] =\left[ \begin{array}{c} \vec{i}^A\\ \vec{j}^A\\ \vec{k}^A\\ \end{array} \right] ^{\mathrm{T}}\left[ \begin{array}{c} P_{1}^{A}\\ P_{2}^{A}\\ P_{3}^{A}\\ \end{array} \right] \\ \Rightarrow \left[ \begin{array}{c} \vec{i}^A\\ \vec{j}^A\\ \vec{k}^A\\ \end{array} \right] ^{\mathrm{T}}\left[ Q_{\mathrm{B}}^{A} \right] \left[ \begin{array}{c} P_{1}^{\mathrm{B}}\\ P_{2}^{\mathrm{B}}\\ P_{3}^{\mathrm{B}}\\ \end{array} \right] =\left[ \begin{array}{c} \vec{i}^A\\ \vec{j}^A\\ \vec{k}^A\\ \end{array} \right] ^{\mathrm{T}}\left[ \begin{array}{c} P_{1}^{A}\\ P_{2}^{A}\\ P_{3}^{A}\\ \end{array} \right] \\ \Rightarrow \left[ Q_{\mathrm{B}}^{A} \right] \left[ \begin{array}{c} P_{1}^{\mathrm{B}}\\ P_{2}^{\mathrm{B}}\\ P_{3}^{\mathrm{B}}\\ \end{array} \right] =\left[ \begin{array}{c} P_{1}^{A}\\ P_{2}^{A}\\ P_{3}^{A}\\ \end{array} \right] =\left[ \begin{array}{c} {P^{\prime}}_{1}^{\mathrm{B}}\\ {P^{\prime}}_{2}^{\mathrm{B}}\\ {P^{\prime}}_{3}^{\mathrm{B}}\\ \end{array} \right] i Bj Bk B T P1BP2BP3B = i Aj Ak A T P1AP2AP3A [QBA]T i Aj Ak A T P1BP2BP3B = i Aj Ak A T P1AP2AP3A i Aj Ak A T[QBA] P1BP2BP3B = i Aj Ak A T P1AP2AP3A [QBA] P1BP2BP3B = P1AP2AP3A = P1BP2BP3B

  • Rotating a vector or a frame (轴角变换)

Given two coordinate frames { A } \left\{ A \right\} {A} and { B } \left\{ B \right\} {B}, the configuration of B B B relative to A A A is determined by [ Q B A ] \left[ Q_{\mathrm{B}}^{A} \right] [QBA] and R ⃗ B A \vec{R}_{\mathrm{B}}^{A} R BA

For a (free) vector R ⃗ f r e e \vec{R}_{\mathrm{free}} R free, its coordinates R ⃗ f r e e A \vec{R}_{free}^{A} R freeA and R ⃗ f r e e B \vec{R}_{free}^{B} R freeB are related by : R ⃗ f r e e A = [ Q B A ] R ⃗ f r e e B \vec{R}_{free}^{A}=\left[ Q_{\mathrm{B}}^{A} \right] \vec{R}_{\mathrm{free}}^{B} R freeA=[QBA]R freeB

For a point P P P, its coordinates R ⃗ P A \vec{R}_{\mathrm{P}}^{A} R PA and R ⃗ P B \vec{R}_{\mathrm{P}}^{B} R PB are related by: R ⃗ P A = [ Q B A ] R ⃗ P B + R ⃗ B A \vec{R}_{\mathrm{P}}^{A}=\left[ Q_{\mathrm{B}}^{A} \right] \vec{R}_{\mathrm{P}}^{B}+\vec{R}_{\mathrm{B}}^{A} R PA=[QBA]R PB+R BA(一个无聊的小陷阱)

1.3 Homogeneous Transformation Matrix

Linear relation: R ⃗ f r e e A = [ Q B A ] R ⃗ f r e e B \vec{R}_{\mathrm{free}}^{A}=\left[ Q_{\mathrm{B}}^{A} \right] \vec{R}_{\mathrm{free}}^{B} R freeA=[QBA]R freeB——configuration of { B } \left\{ B \right\} {B} relative to { A } \left\{ A \right\} {A}
Affine relation: R ⃗ P A = [ Q B A ] R ⃗ P B + R ⃗ B A \vec{R}_{\mathrm{P}}^{A}=\left[ Q_{\mathrm{B}}^{A} \right] \vec{R}_{\mathrm{P}}^{B}+\vec{R}_{\mathrm{B}}^{A} R PA=[QBA]R PB+R BA

Homogeneous Transformation Matrix: [ T B A ] \left[ T_{\mathrm{B}}^{A} \right] [TBA]
R ⃗ P A = [ Q B A ] R ⃗ P B + R ⃗ B A ⇒ [ R ⃗ P A 1 ] = [ [ Q B A ] R ⃗ B A 0 1 × 3 1 ] 4 × 4 [ R ⃗ P B 1 ] \vec{R}_{\mathrm{P}}^{A}=\left[ Q_{\mathrm{B}}^{A} \right] \vec{R}_{\mathrm{P}}^{B}+\vec{R}_{\mathrm{B}}^{A}\Rightarrow \left[ \begin{array}{c} \vec{R}_{\mathrm{P}}^{A}\\ 1\\ \end{array} \right] =\left[ \begin{matrix} \left[ Q_{\mathrm{B}}^{A} \right]& \vec{R}_{\mathrm{B}}^{A}\\ 0_{1\times 3}& 1\\ \end{matrix} \right] _{4\times 4}\left[ \begin{array}{c} \vec{R}_{\mathrm{P}}^{B}\\ 1\\ \end{array} \right] R PA=[QBA]R PB+R BA[R PA1]=[[QBA]01×3R BA1]4×4[R PB1]
⇒ [ T B A ] = [ [ Q B A ] R ⃗ B A 0 1 ] \Rightarrow \left[ T_{\mathrm{B}}^{A} \right] =\left[ \begin{matrix} \left[ Q_{\mathrm{B}}^{A} \right]& \vec{R}_{\mathrm{B}}^{A}\\ 0& 1\\ \end{matrix} \right] [TBA]=[[QBA]0R BA1]

Homogeneous coordinates: Given a point P ∈ R 3 P\in \mathbb{R} ^3 PR3, its homogeneous coordinates is given by [ R ⃗ P A ] = [ R ⃗ P A 1 ] ∈ R 4 \left[ \vec{R}_{\mathrm{P}}^{A} \right] =\left[ \begin{array}{c} \vec{R}_{\mathrm{P}}^{A}\\ 1\\ \end{array} \right] \in \mathbb{R} ^4 [R PA]=[R PA1]R4

最终简化为:
[ R ⃗ P A ] = [ T B A ] [ R ⃗ P B ] \left[ \vec{R}_{\mathrm{P}}^{A} \right] =\left[ T_{\mathrm{B}}^{A} \right] \left[ \vec{R}_{\mathrm{P}}^{B} \right] [R PA]=[TBA][R PB]

对于向量 R ⃗ P 1 P 2 A \vec{R}_{\mathrm{P}_1\mathrm{P}_2}^{A} R P1P2A 而言,则有:
[ R ⃗ P 1 P 2 A ] = [ R ⃗ P 2 A − R ⃗ P 1 A ] = [ R ⃗ P 2 A 1 ] − [ R ⃗ P 1 A 1 ] = [ R ⃗ P 2 A − R ⃗ P 1 A 0 ] = [ R ⃗ P 1 P 2 A 0 ] \left[ \vec{R}_{\mathrm{P}_1\mathrm{P}_2}^{A} \right] =\left[ \vec{R}_{\mathrm{P}_2}^{A}-\vec{R}_{\mathrm{P}_1}^{A} \right] =\left[ \begin{array}{c} \vec{R}_{\mathrm{P}_2}^{A}\\ 1\\ \end{array} \right] -\left[ \begin{array}{c} \vec{R}_{\mathrm{P}_1}^{A}\\ 1\\ \end{array} \right] =\left[ \begin{array}{c} \vec{R}_{\mathrm{P}_2}^{A}-\vec{R}_{\mathrm{P}_1}^{A}\\ 0\\ \end{array} \right] =\left[ \begin{array}{c} \vec{R}_{\mathrm{P}_1\mathrm{P}_2}^{A}\\ 0\\ \end{array} \right] [R P1P2A]=[R P2AR P1A]=[R P2A1][R P1A1]=[R P2AR P1A0]=[R P1P2A0]

  • Example of Homogeneous Transformation Matrix
    在这里插入图片描述

2. Rigid Body Velocity(Twist)

Consider a rigid body with angular velocity: ω ⃗ \vec{\omega} ω (this is a free vector)
Suppose the actual rotation axis passes through a point: P P P ; Let v ⃗ P \vec{v}_{\mathrm{P}} v P be the velocity of the point P P P

  • Question: A rigid body cibraubs infinitely many points with different velocities. How to parameterize/pə'ræmɪtə,raɪz/参数化 all of their velocities?
    1.Consider an aritrary body-fixed point Q Q Q (means that the point is rigidly attached to the body, and moves with the body), we have: v ⃗ Q = v ⃗ P + ω ⃗ × R ⃗ P Q \vec{v}_{\mathrm{Q}}=\vec{v}_{\mathrm{P}}+\vec{\omega}\times \vec{R}_{\mathrm{PQ}} v Q=v P+ω ×R PQ
    2.The velocity of an arbitrary body-fixed point depends only on ( ω ⃗ , v ⃗ P , R ⃗ P \vec{\omega},\vec{v}_{\mathrm{P}},\vec{R}_{\mathrm{P}} ω ,v P,R P) and the location of the point Q Q Q
  • Fact: The representation form is independent of the reference point P P P
  • Consider an arbitrary point S S S in space
    1. S S S may not be on the rotation axis
    2. S S S may be a stationary point in space(does not move)
    3.Let v ⃗ S \vec{v}_{\mathrm{S}} v S be the velocity of the body-fixed point(rigidly attached to the body ) currently coincides with S S S(may not be body frame)
    4.We still have: v ⃗ Q = v ⃗ P + ω ⃗ × R ⃗ P Q , v ⃗ S = v ⃗ P + ω ⃗ × R ⃗ P S ⇒ v ⃗ Q = v ⃗ S − ω ⃗ × R ⃗ P S + ω ⃗ × R ⃗ P Q = v ⃗ S + ω ⃗ × R ⃗ S Q \vec{v}_{\mathrm{Q}}=\vec{v}_{\mathrm{P}}+\vec{\omega}\times \vec{R}_{\mathrm{PQ}},\vec{v}_{\mathrm{S}}=\vec{v}_{\mathrm{P}}+\vec{\omega}\times \vec{R}_{\mathrm{PS}}\Rightarrow \vec{v}_{\mathrm{Q}}=\vec{v}_{\mathrm{S}}-\vec{\omega}\times \vec{R}_{\mathrm{PS}}+\vec{\omega}\times \vec{R}_{\mathrm{PQ}}=\vec{v}_{\mathrm{S}}+\vec{\omega}\times \vec{R}_{\mathrm{SQ}} v Q=v P+ω ×R PQ,v S=v P+ω ×R PSv Q=v Sω ×R PS+ω ×R PQ=v S+ω ×R SQ

The body can be regarded as translating with a linear velocity v ⃗ S \vec{v}_{\mathrm{S}} v S , while rotating with angular velocity ω ⃗ \vec{\omega} ω about an axis passing through S S S

2.1 Rigid Body Velocity: Spatial Velocity (Twist)

  • Spatial Velocity(Twist) : V S = ( ω ⃗ , v ⃗ S ) \mathcal{V} _S=\left( \vec{\omega},\vec{v}_{\mathrm{S}} \right) VS=(ω ,v S)
    ω ⃗ \vec{\omega} ω - angular velocity; v ⃗ S \vec{v}_{\mathrm{S}} v S - velocity of the body-fixed point currently coincides with S S S
    For any other body-fixed point Q Q Q, its velocity is v ⃗ Q = v ⃗ S + ω ⃗ × R ⃗ S Q \vec{v}_{\mathrm{Q}}=\vec{v}_{\mathrm{S}}+\vec{\omega}\times \vec{R}_{\mathrm{SQ}} v Q=v S+ω ×R SQ

  • Twist is a ‘physical’ quantity (just like linear or angular velocity): It can be represented in any chosen reference point S S S

  • A rigid body with V S = ( ω ⃗ , v ⃗ S ) \mathcal{V} _S=\left( \vec{\omega},\vec{v}_{\mathrm{S}} \right) VS=(ω ,v S) can be ‘thought of’ as translating at v ⃗ S \vec{v}_{\mathrm{S}} v S while rotating with angular velocity ω ⃗ \vec{\omega} ω about an axis passing through S S S : This is just one way to interpret the motion.

2.2 Spatial Velocity Representation in a Reference Frame

Given frame { O } \left\{ O \right\} {O} and a spatial velocity V ∈ R 6 \mathcal{V} \in \mathbb{R} ^6 VR6

Choose o o o (the origin of { O } \left\{ O \right\} {O}) as the reference point to represent the rigid body velocity—— V O = ( ω ⃗ O , v ⃗ O ) \mathcal{V} ^O=\left( \vec{\omega}^O,\vec{v}^O \right) VO=(ω O,v O) : Coordinates for the V \mathcal{V} V in { O } \left\{ O \right\} {O} , by dafault, we assume the origin of the frame is used as the reference point: V O = V O O \mathcal{V} ^O=\mathcal{V} _{\mathrm{O}}^{O} VO=VOO

Example of Twist ,1:
在这里插入图片描述

Example of Twist ,2:
在这里插入图片描述

2.3 Change Reference Frame for Twist

Given a twist V \mathcal{V} V , let V A \mathcal{V} ^A VA and V B \mathcal{V} ^B VB be their coordinates in frames { A } \left\{ A \right\} {A} and { B } \left\{ B \right\} {B} : V A = [ ω ⃗ A v ⃗ A ] , V B = [ ω ⃗ B v ⃗ B ] \mathcal{V} ^A=\left[ \begin{array}{c} \vec{\omega}^A\\ \vec{v}^A\\ \end{array} \right] ,\mathcal{V} ^B=\left[ \begin{array}{c} \vec{\omega}^B\\ \vec{v}^B\\ \end{array} \right] VA=[ω Av A],VB=[ω Bv B]

  • ω ⃗ A = [ Q B A ] ω ⃗ B \vec{\omega}^A=\left[ Q_{\mathrm{B}}^{A} \right] \vec{\omega}^B ω A=[QBA]ω B
  • v ⃗ A A = v ⃗ B A + ω ⃗ A × R ⃗ B A A = [ Q B A ] v ⃗ B B + R ⃗ B A × ( [ Q B A ] ω ⃗ B ) = [ Q B A ] v ⃗ B B + R ⃗ ~ B A [ Q B A ] ω ⃗ B \vec{v}_{\mathrm{A}}^{A}=\vec{v}_{\mathrm{B}}^{A}+\vec{\omega}^A\times \vec{R}_{\mathrm{BA}}^{A}=\left[ Q_{\mathrm{B}}^{A} \right] \vec{v}_{\mathrm{B}}^{B}+\vec{R}_{\mathrm{B}}^{A}\times \left( \left[ Q_{\mathrm{B}}^{A} \right] \vec{\omega}^B \right) =\left[ Q_{\mathrm{B}}^{A} \right] \vec{v}_{\mathrm{B}}^{B}+\tilde{\vec{R}}_{\mathrm{B}}^{A}\left[ Q_{\mathrm{B}}^{A} \right] \vec{\omega}^B v AA=v BA+ω A×R BAA=[QBA]v BB+R BA×([QBA]ω B)=[QBA]v BB+R ~BA[QBA]ω B

V A = [ ω ⃗ A v ⃗ A ] = [ [ Q B A ] 0 3 × 3 R ⃗ ~ B A [ Q B A ] [ Q B A ] ] 6 × 6 [ ω ⃗ B v ⃗ B ] = [ X B A ] V B \mathcal{V} ^A=\left[ \begin{array}{c} \vec{\omega}^A\\ \vec{v}^A\\ \end{array} \right] =\left[ \begin{matrix} \left[ Q_{\mathrm{B}}^{A} \right]& 0_{3\times 3}\\ \tilde{\vec{R}}_{\mathrm{B}}^{A}\left[ Q_{\mathrm{B}}^{A} \right]& \left[ Q_{\mathrm{B}}^{A} \right]\\ \end{matrix} \right] _{6\times 6}\left[ \begin{array}{c} \vec{\omega}^B\\ \vec{v}^B\\ \end{array} \right] =\left[ X_{\mathrm{B}}^{A} \right] \mathcal{V} ^B VA=[ω Av A]=[[QBA]R ~BA[QBA]03×3[QBA]]6×6[ω Bv B]=[XBA]VB

If configuration V B \mathcal{V} ^B VB in V A \mathcal{V} ^A VA is [ T B A ] = ( [ Q B A ] , R ⃗ B A ) \left[ T_{\mathrm{B}}^{A} \right] =\left( \left[ Q_{\mathrm{B}}^{A} \right] ,\vec{R}_{\mathrm{B}}^{A} \right) [TBA]=([QBA],R BA) , then : [ X B A ] = [ A d T ] = [ [ Q B A ] 0 R ⃗ ~ B A [ Q B A ] [ Q B A ] ] \left[ X_{\mathrm{B}}^{A} \right] =\left[ Ad_{\mathrm{T}} \right] =\left[ \begin{matrix} \left[ Q_{\mathrm{B}}^{A} \right]& 0\\ \tilde{\vec{R}}_{\mathrm{B}}^{A}\left[ Q_{\mathrm{B}}^{A} \right]& \left[ Q_{\mathrm{B}}^{A} \right]\\ \end{matrix} \right] [XBA]=[AdT]=[[QBA]R ~BA[QBA]0[QBA]]——adjoint to T

3. Geometric Aspect of Twist: Screw Motion

v ⃗ = ∥ v ⃗ ∥ v ⃗ ^ , ω ⃗ = θ ˙ ω ⃗ ^ \vec{v}=\left\| \vec{v} \right\| \hat{\vec{v}},\vec{\omega}=\dot{\theta}\hat{\vec{\omega}} v =v v ^,ω =θ˙ω ^

3.1 Screw Motion : Definition

Screw Motion : Standard/ canonical/kə'nɒnɪk(ə)l/典型 motion for rigid body motion

Rotating about an axis while also translating along the axis
在这里插入图片描述
Represented by screw axis { R ⃗ q , s ^ , h } \left\{ \vec{R}_q,\hat{s},h \right\} {R q,s^,h} and rotation speed θ ˙ \dot{\theta} θ˙ (derive the linear speed is h θ ˙ h\dot{\theta} hθ˙)

  • s ^ \hat{s} s^ : unit vector in the direction of the rotatin axis
  • R ⃗ q \vec{R}_q R q : any point on the rotation axis
  • h h h : screw pitch which defines the ratio of the linear velocity along with the screw axis to the angular velocity about the screw axis

Theorem(Chasles) : Every rigid body motion can be realized by a screw motion

3.2 From Screw Motion to Twist

Consider a rigid body under a screw motion with screw axis { R ⃗ q , s ^ , h } \left\{ \vec{R}_q,\hat{s},h \right\} {R q,s^,h} and rotation speed θ ˙ \dot{\theta} θ˙
Fix a reference frame V A \mathcal{V} ^A VA with origin A A A
Find the Twist : V A = ( ω ⃗ A , v ⃗ A A ) = ( s ^ A θ ˙ , v ⃗ q A + ω ⃗ A × R ⃗ q A A ) = ( s ^ A θ ˙ , h θ ˙ + ( s ^ A θ ˙ ) × R ⃗ q A A ) = ( s ^ A θ ˙ , h θ ˙ + R ⃗ q A × ( s ^ A θ ˙ ) ) \mathcal{V} ^A=\left( \vec{\omega}^A,\vec{v}_{\mathrm{A}}^{A} \right) =\left( \hat{s}^A\dot{\theta},\vec{v}_{\mathrm{q}}^{A}+\vec{\omega}^A\times \vec{R}_{\mathrm{qA}}^{A} \right) =\left( \hat{s}^A\dot{\theta},h\dot{\theta}+\left( \hat{s}^A\dot{\theta} \right) \times \vec{R}_{\mathrm{qA}}^{A} \right) =\left( \hat{s}^A\dot{\theta},h\dot{\theta}+\vec{R}_{\mathrm{q}}^{A}\times \left( \hat{s}^A\dot{\theta} \right) \right) VA=(ω A,v AA)=(s^Aθ˙,v qA+ω A×R qAA)=(s^Aθ˙,hθ˙+(s^Aθ˙)×R qAA)=(s^Aθ˙,hθ˙+R qA×(s^Aθ˙))

Result: given screw axis { R ⃗ q , s ^ , h } \left\{ \vec{R}_q,\hat{s},h \right\} {R q,s^,h} with rotation speed θ ˙ \dot{\theta} θ˙ , the corresponding twist V A = ( ω ⃗ A , v ⃗ A A ) \mathcal{V} ^A=\left( \vec{\omega}^A,\vec{v}_{\mathrm{A}}^{A} \right) VA=(ω A,v AA) is given by :
ω ⃗ A = s ^ A θ ˙ , v ⃗ A A = h θ ˙ + R ⃗ q A × ( s ^ A θ ˙ ) \vec{\omega}^A=\hat{s}^A\dot{\theta},\vec{v}_{\mathrm{A}}^{A}=h\dot{\theta}+\vec{R}_{\mathrm{q}}^{A}\times \left( \hat{s}^A\dot{\theta} \right) ω A=s^Aθ˙,v AA=hθ˙+R qA×(s^Aθ˙)
The result holds as long as all the vectors and the twist are repersented in the same reference frame

3.3 From Twist to Screw Motion

The converse is true as well: given any twist V A = ( ω ⃗ A , v ⃗ A A ) \mathcal{V} ^A=\left( \vec{\omega}^A,\vec{v}_{\mathrm{A}}^{A} \right) VA=(ω A,v AA) we can always find the corresponding screw motion { R ⃗ q , s ^ , h } \left\{ \vec{R}_q,\hat{s},h \right\} {R q,s^,h} and θ ˙ \dot{\theta} θ˙

  • If ω ⃗ = 0 \vec{\omega}=0 ω =0, then it is a pure translation( h = ∞ h=\infty h=)
    s ^ = v ⃗ ∥ v ⃗ ∥ , θ ˙ = ∥ v ⃗ ∥ , h = ∞ \hat{s}=\frac{\vec{v}}{\left\| \vec{v} \right\|},\dot{\theta}=\left\| \vec{v} \right\| ,h=\infty s^=v v ,θ˙=v ,h=, R ⃗ q \vec{R}_q R q can be arbitrary
  • If ω ⃗ ≠ 0 \vec{\omega}\ne 0 ω =0:
    s ^ = ω ⃗ ∥ ω ⃗ ∥ , θ ˙ = ∥ ω ⃗ ∥ , R ⃗ q = ω ⃗ × v ⃗ ∥ ω ⃗ ∥ 2 , h = ω ⃗ T v ⃗ ∥ ω ⃗ ∥ \hat{s}=\frac{\vec{\omega}}{\left\| \vec{\omega} \right\|},\dot{\theta}=\left\| \vec{\omega} \right\| ,\vec{R}_{\mathrm{q}}=\frac{\vec{\omega}\times \vec{v}}{\left\| \vec{\omega} \right\| ^2},h=\frac{\vec{\omega}^{\mathrm{T}}\vec{v}}{\left\| \vec{\omega} \right\|} s^=ω ω ,θ˙=ω ,R q=ω 2ω ×v ,h=ω ω Tv

You can pluf into the euqation above to very the result

Example: Screw Axin and Twist
在这里插入图片描述
在这里插入图片描述

3.4 Screw Reoersentation of a Twist

  • Recall : an angular velocity vector ω ⃗ \vec{\omega} ω can be viewed as θ ˙ ω ⃗ \dot{\theta}\vec{\omega} θ˙ω , where ω ⃗ \vec{\omega} ω is the unit ratation axis and θ ˙ \dot{\theta} θ˙ is the rate of rotation about that axis

Similarly, a twist (spatial velocity) V \mathcal{V} V can be interpreted in terms of a screw axis S ^ = { s ^ , h , R ⃗ q } \hat{\mathcal{S}}=\left\{ \hat{s},h,\vec{R}_q \right\} S^={s^,h,R q} and a velocity θ ˙ \dot{\theta} θ˙ about the screw axis

Consider a rigid body motion along a screw axis S ^ = { s ^ , h , R ⃗ q } \hat{\mathcal{S}}=\left\{ \hat{s},h,\vec{R}_q \right\} S^={s^,h,R q} with speed θ ˙ \dot{\theta} θ˙. With slight abuse of notation, we will often write its twist as
V = θ ˙ S ^ \mathcal{V} =\dot{\theta}\hat{\mathcal{S}} V=θ˙S^

In this notation, we think of S ^ \hat{\mathcal{S}} S^ as the twist associated with a unit speed motion along the screw axis { s ^ , h , R ⃗ q } \left\{ \hat{s},h,\vec{R}_q \right\} {s^,h,R q}

4. Extra Note : Tutorial on Twist/spatial Velocity and Screw Axis

4.1 What is Spatial Velocity and Twist

  • Twist/spatial velocity is the velocity of the whole rigid body, not velocity of a particular point
  • Rigid body has inifinitely many points with different velocites
  • All these velocites v ⃗ P i \vec{v}_{\mathrm{P}_{\mathrm{i}}} v Pi are not independent, depend on the vector of its location and other parameters(common for the entire body), and can be experssed by same set of parameters(twist/spatial velocity is one such parameters)
  1. Assume P 0 P_0 P0 is on the rotation axis/body-fixed, then any other body-fixed
    pt. v ⃗ P i = v ⃗ P 0 + ω ⃗ × R ⃗ P 0 P i \vec{v}_{\mathrm{P}_{\mathrm{i}}}=\vec{v}_{\mathrm{P}_0}+\vec{\omega}\times \vec{R}_{\mathrm{P}_0\mathrm{P}_{\mathrm{i}}} v Pi=v P0+ω ×R P0Pi
  2. What if we use v ⃗ q \vec{v}_{\mathrm{q}} v q as the reference velocity, for arbitrary body-fixed
    pt. q q q (may not be on rotation axis), we still have the same expression : v ⃗ P i = v ⃗ q + ω ⃗ × R ⃗ q P i \vec{v}_{\mathrm{P}_{\mathrm{i}}}=\vec{v}_{\mathrm{q}}+\vec{\omega}\times \vec{R}_{\mathrm{qP}_{\mathrm{i}}} v Pi=v q+ω ×R qPi
    ——use P 0 P_0 P0 as intermediate variable , q q q: body-fixed by above—— v ⃗ q = v ⃗ P 0 + ω ⃗ × R ⃗ P 0 P i = v ⃗ P i − ω ⃗ × R ⃗ q P i + ω ⃗ × R ⃗ P 0 P i \vec{v}_{\mathrm{q}}=\vec{v}_{P_0}+\vec{\omega}\times \vec{R}_{P_0\mathrm{P}_{\mathrm{i}}}=\vec{v}_{\mathrm{P}_{\mathrm{i}}}-\vec{\omega}\times \vec{R}_{\mathrm{qP}_{\mathrm{i}}}+\vec{\omega}\times \vec{R}_{P_0\mathrm{P}_{\mathrm{i}}} v q=v P0+ω ×R P0Pi=v Piω ×R qPi+ω ×R P0Pi
  3. Now let;s consider a frame { A } \left\{ A \right\} {A} with origin A A A
    3.1 Assume { A } \left\{ A \right\} {A} body fixed, moves with the body (in this case , let point A A A is point q q q) v ⃗ P i = v ⃗ A + ω ⃗ × R ⃗ A P i \vec{v}_{\mathrm{P}_{\mathrm{i}}}=\vec{v}_{\mathrm{A}}+\vec{\omega}\times \vec{R}_{\mathrm{AP}_{\mathrm{i}}} v Pi=v A+ω ×R APi in { A } \left\{ A \right\} {A} system : v ⃗ P i A = v ⃗ A A + ω ⃗ A × R ⃗ A P i A {\vec{v}_{\mathrm{P}_{\mathrm{i}}}}^A={\vec{v}_{\mathrm{A}}}^A+\vec{\omega}^A\times {\vec{R}_{\mathrm{AP}_{\mathrm{i}}}}^A v PiA=v AA+ω A×R APiA
    3.2 Assume { A } \left\{ A \right\} {A} NOT body-fixed ( { A } \left\{ A \right\} {A} does not move / moves in other way) , let q q q body fixes point such that R ⃗ q = R ⃗ A \vec{R}_{\mathrm{q}}=\vec{R}_{\mathrm{A}} R q=R A , if we define v ⃗ A \vec{v}_{\mathrm{A}} v A as the velocity of the body-fixed point currently coincides wth A A A : v ⃗ P i = v ⃗ q ( t ) + ω ⃗ × R ⃗ q ( t ) P i = v ⃗ A + ω ⃗ × R ⃗ A P i \vec{v}_{\mathrm{P}_{\mathrm{i}}}=\vec{v}_{\mathrm{q}\left( t \right)}+\vec{\omega}\times \vec{R}_{\mathrm{q}\left( t \right) \mathrm{P}_{\mathrm{i}}}=\vec{v}_{\mathrm{A}}+\vec{\omega}\times \vec{R}_{\mathrm{AP}_{\mathrm{i}}} v Pi=v q(t)+ω ×R q(t)Pi=v A+ω ×R APi

summary : Given twist V = ( ω ⃗ , v ⃗ A ) \mathcal{V} =\left( \vec{\omega}^{},\vec{v}_{\mathrm{A}}^{} \right) V=(ω ,v A) , v ⃗ A \vec{v}_{\mathrm{A}}^{} v A velocity of body-fixed point currenting cioncides with A A A (reference poiny)

  • For any body-fixed P i P_{\mathrm{i}} Pi: v ⃗ P i = v ⃗ A + ω ⃗ × R ⃗ A P i \vec{v}_{\mathrm{P}_{\mathrm{i}}}=\vec{v}_{\mathrm{A}}+\vec{\omega}\times \vec{R}_{\mathrm{AP}_{\mathrm{i}}} v Pi=v A+ω ×R APi if A A A is origin of frame { A } \left\{ A \right\} {A} : v ⃗ P i A = v ⃗ A A + ω ⃗ A × R ⃗ A P i A {\vec{v}_{\mathrm{P}_{\mathrm{i}}}}^A={\vec{v}_{\mathrm{A}}}^A+\vec{\omega}^A\times {\vec{R}_{\mathrm{AP}_{\mathrm{i}}}}^A v PiA=v AA+ω A×R APiA
  • We can think the body is translating at velocity v ⃗ A \vec{v}_{\mathrm{A}} v A , while rotating at velocity ω ⃗ \vec{\omega} ω about axis passing through A A A

在这里插入图片描述
在这里插入图片描述

4.2 What is Screw Motion and Axis?

在这里插入图片描述
Screw motion : combined angular and linear motion

  • motion driven by rotation
  • parameters : { s ^ , h , R ⃗ q } \left\{ \hat{s},h,\vec{R}_q \right\} {s^,h,R q} and θ ˙ \dot{\theta} θ˙: ( s ^ , R ⃗ q ) \left( \hat{s},\vec{R}_q \right) (s^,R q) determeines the rotation axis; h h h linear speed / angular speed (due to thread on the screw - rotation induces linear motion)( h = 0 h=0 h=0-pure rotation, h = ∞ h=\infty h=-pure translation)

Over all { s ^ , h , R ⃗ q } \left\{ \hat{s},h,\vec{R}_q \right\} {s^,h,R q} screw axis(rotation axis + pitch); θ ˙ \dot{\theta} θ˙ how fast screw rotates

  1. screw motion is a special rigid-body motion, so its has a twist
    pitch a frame { A } \left\{ A \right\} {A} : ( s ^ , h , R ⃗ q ) + θ ˙ ⇒ [ ω ⃗ A v ⃗ A A ] , ω ⃗ A = θ ˙ s ^ , v ⃗ A A = ( h θ ˙ ) s ^ − ω ⃗ A × R ⃗ q \left( \hat{s},h,\vec{R}_q \right) +\dot{\theta}\Rightarrow \left[ \begin{array}{c} \vec{\omega}^A\\ \vec{v}_{\mathrm{A}}^{A}\\ \end{array} \right] , \vec{\omega}^A=\dot{\theta}\hat{s},\vec{v}_{\mathrm{A}}^{A}=\left( h\dot{\theta} \right) \hat{s}-\vec{\omega}^A\times \vec{R}_q (s^,h,R q)+θ˙[ω Av AA],ω A=θ˙s^,v AA=(hθ˙)s^ω A×R q use q q q sa the reference
  2. Ant rigid-body motion can be viewed as screw motion. Given any twist V \mathcal{V} V , we can always find ( s ^ , h , R ⃗ q , θ ˙ ) \left( \hat{s},h,\vec{R}_q,\dot{\theta} \right) (s^,h,R q,θ˙)
  3. We know V = S c r e w T o T w i s t ( s ^ , h , R ⃗ q , 1 ) θ ˙ = θ ˙ S \mathcal{V} =ScrewToTwist\left( \hat{s},h,\vec{R}_q,1 \right) \dot{\theta}=\dot{\theta}\mathcal{S} V=ScrewToTwist(s^,h,R q,1)θ˙=θ˙S while S \mathcal{S} S the twist corresponds to screw motion ( s ^ , h , R ⃗ q ) , θ ˙ = 1 \left( \hat{s},h,\vec{R}_q \right) ,\dot{\theta}=1 (s^,h,R q),θ˙=1
    eg. ω ⃗ = θ ˙ ω ^ \vec{\omega}=\dot{\theta}\hat{\omega} ω =θ˙ω^ , ω ^ \hat{\omega} ω^ : rotation axis or angular velocity when rotates about ω ^ \hat{\omega} ω^ at θ ˙ = 1 \dot{\theta}=1 θ˙=1

Summarize : Given any rigid-body motion V = [ ω ⃗ v ⃗ A ] \mathcal{V} =\left[ \begin{array}{c} \vec{\omega}\\ \vec{v}_{\mathrm{A}}^{}\\ \end{array} \right] V=[ω v A] , with angular direction ω ^ \hat{\omega} ω^ linear motion direction v ^ \hat{v} v^ , knows screw axis direction S ^ \hat{\mathcal{S}} S^—— V = θ ˙ S ^ \mathcal{V} =\dot{\theta}\hat{\mathcal{S}} V=θ˙S^

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/204264.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

Centos7安装宝塔面板8.0.3并实现公网远程登录宝塔面板【内网穿透】

文章目录 一、使用官网一键安装命令安装宝塔二、简单配置宝塔,内网穿透三、使用固定公网地址访问宝塔 宝塔面板作为建站运维工具,适合新手,简单好用。当我们在家里/公司搭建了宝塔,没有公网IP,但是想要在外也可以访问内…

组合总和II(回溯、去重)

40. 组合总和 II - 力扣(LeetCode) 题目描述 给定一个候选人编号的集合 candidates 和一个目标数 target ,找出 candidates 中所有可以使数字和为 target 的组合。 candidates 中的每个数字在每个组合中只能使用 一次 。 注意&#xff1a…

相交链表(LeetCode 160)

文章目录 1.问题描述2.难度等级3.热门指数4.解题思路方法一:暴力法方法二:哈希表方法三:双栈方法四:双指针:记录链表长度方法五:双指针:互换遍历 5.实现示例参考文献 1.问题描述 给两个单链表的…

Java第二十一章网络通信

一、网络程序设计基础 1、局域网与互联网 为了实现两台计算机的通信,必须用一个网络线路连接两台计算机,如下图所示。 2、网络协议 1.IP协议 IP指网际互连协议,Internet Protocol的缩写,是TCP/IP体系中的网络层协议。设计IP的目的…

C++几种cast该如何使用

在C中&#xff0c;有四种主要的类型转换&#xff08;cast&#xff09;方法&#xff1a; 1. Static Cast&#xff08;静态转换&#xff09;&#xff1a; 用法&#xff1a;static_cast<new_type>(expression)情况&#xff1a;用于基本数据类型之间的转换&#xff0c;例如…

深入理解数据在内存中是如何存储的,位移操作符如何使用(能看懂文字就能明白系列)文章超长,慢慢品尝

系列文章目录 C语言笔记专栏 能看懂文字就能明白系列 &#x1f31f; 个人主页&#xff1a;古德猫宁- &#x1f308; 信念如阳光&#xff0c;照亮前行的每一步 文章目录 系列文章目录&#x1f308; *信念如阳光&#xff0c;照亮前行的每一步* 前言引子一、2进制和进制转化为什么…

Elasticsearch mapping 之 性能相关配置

ES 常见类型 通用类型: 二进制: binary 布尔型: boolean 字符串: keyword, constant_keyword, wildcard, text 别名: alias 对象: object, flattened, nested, join 结构化数据类型: Range, ip, version, murmur3 空间数据类型: geo_point, geo_shape, point, shape 性…

Verilog开源项目——百兆以太网交换机(四)令牌桶管理单元设计

Verilog开源项目——百兆以太网交换机&#xff08;四&#xff09;令牌桶管理单元设计 &#x1f508;声明&#xff1a;未经作者允许&#xff0c;禁止转载 &#x1f603;博主主页&#xff1a;王_嘻嘻的CSDN主页 &#x1f511;全新原创以太网交换机项目&#xff0c;Blog内容将聚焦…

说说你熟悉哪些maven命令?

Maven是一个流行的Java项目管理和构建工具&#xff0c;它提供了许多命令行工具来帮助开发者管理和构建项目。以下是一些常见的Maven命令&#xff1a; mvn clean&#xff1a;清理项目构建产生的临时文件。mvn compile&#xff1a;编译Java源代码到字节码文件。mvn test&#xf…

Element Plus设置input文本域组件不可鼠标拖拉高度

<el-input type"textarea" resize"none" v-model.trim"form.name" placeholder"请在此填写退款原因" maxlength"100" show-word-limit :rows"3" style"width: 341px" /> <-- resize"none…

KALI LINUX安全审核

预计更新 第一章 入门 1.1 什么是Kali Linux&#xff1f; 1.2 安装Kali Linux 1.3 Kali Linux桌面环境介绍 1.4 基本命令和工具 第二章 信息收集 1.1 网络扫描 1.2 端口扫描 1.3 漏洞扫描 1.4 社交工程学 第三章 攻击和渗透测试 1.1 密码破解 1.2 暴力破解 1.3 漏洞利用 1.4 …

前缀和|二分查找|LeetCode2234| 花园的最大总美丽值

作者推荐 贪心算法LeetCode2071:你可以安排的最多任务数目 本文涉及的基础知识点 C算法&#xff1a;前缀和、前缀乘积、前缀异或的原理、源码及测试用例 包括课程视频 二分查找算法合集 题目 Alice 是 n 个花园的园丁&#xff0c;她想通过种花&#xff0c;最大化她所有花…

pycharm中debug,py文件

1、先把需要的实参传入 2、在合适位置打上断点 3、在小三角旁边右键调用调试 4.步进/步出查看 5.选择单步执行&#xff0c;走的更慢

使用Python实现爬虫IP负载均衡和高可用集群

做大型爬虫项目经常遇到请求频率过高的问题&#xff0c;这里需要说的是使用爬虫IP可以提高抓取效率&#xff0c;那么我们通过什么方法才能实现爬虫IP负载均衡和高可用集群&#xff0c;并且能快速的部署并且完成爬虫项目。 通常在Python中实现爬虫ip负载均衡和高可用集群需要一…

基于ssm助学贷款网站论文

摘 要 现代经济快节奏发展以及不断完善升级的信息化技术&#xff0c;让传统数据信息的管理升级为软件存储&#xff0c;归纳&#xff0c;集中处理数据信息的管理方式。本助学贷款管理系统就是在这样的大环境下诞生&#xff0c;其可以帮助管理者在短时间内处理完毕庞大的数据信息…

CTF 7

信息收集 存活主机探测 arp-scan -l 端口探测 nmap -sT --min-rate 10000 -p- 192.168.0.5 服务版本等信息 nmap -sT -sV -sC -O -p22,80,137,138,139,901,5900,8080,10000 192.168.0.5Starting Nmap 7.94 ( https://nmap.org ) at 2023-11-02 21:23 CST Stats: 0:01:30 elaps…

qt中sokect断开的几种情况

第一部分: 在Qt中,Socket的连接可以在多个时刻被断开。以下是一些常见的情况: 显式断开连接:您可以在代码中显式地调用QAbstractSocket类的disconnectFromHost()或close()方法来断开连接。socket->disconnectFromHost(); // 或者 socket->close();连接错误:当Socke…

服务器适合哪些使用场景_Maizyun

服务器适合哪些使用场景 在当今的数字化时代&#xff0c;服务器作为互联网基础设施的核心组件&#xff0c;被广泛应用于各种场景。本文将探讨服务器适合哪些使用场景。 一、Web服务器 Web服务器是服务器中最常见的一种&#xff0c;用于托管和运行网站。它负责处理来自客户端…

​劲松中西医结合医院专家讲解hpv36阳性是否严重

​劲松中西医结合医院专家讲解hpv36阳性严重性问题 HPV36阳性&#xff0c;就像一场潜在的暴风雨&#xff0c;预示着可能的危机。它代表了一种高危型的HPV感染&#xff0c;就像一只隐藏在暗处的猛兽&#xff0c;随时可能暴起伤人。然而&#xff0c;就像生活中的许多挑战&#x…

Python 在控制台打印带颜色的信息

#格式&#xff1a;  设置颜色开始 &#xff1a;\033[显示方式;前景色;背景色m #说明&#xff1a; 前景色 背景色 颜色 --------------------------------------- 30 40 黑色 31 41 红色 32 …