深入理解数据在内存中是如何存储的,位移操作符如何使用(能看懂文字就能明白系列)文章超长,慢慢品尝

在这里插入图片描述

系列文章目录

C语言笔记专栏
能看懂文字就能明白系列
🌟 个人主页:古德猫宁-

🌈 信念如阳光,照亮前行的每一步


文章目录

  • 系列文章目录
    • 🌈 *信念如阳光,照亮前行的每一步*
  • 前言
  • 引子
  • 一、2进制和进制转化
    • 为什么要使用2进制的形式表示信息
    • 各种进制如何转换
      • 权重和二进制如何转换为十进制
      • 十进制如何转为二进制
      • 二进制如何转八进制
      • 2进制如何转16进制
  • 原码、补码、反码
  • 三、移位运算
    • 左移操作符
    • 右移操作符
    • 位操作符
      • 1、按位与 &
      • 2、按位或 |
      • 3、按位异或 ^
      • 4、按位取反 ~
  • 总结


前言

本节目标:理解数据在计算机中以什么样的方式表现,又用什么方式存储的,各种进制之间如何转换,数据在内存中的表现形式,左移操作符和右移操作符如何移,四个位操作符的计算规则


引子

在日常生活中,我们通常用十进制来表示一个数字,使用起来比较方便,但对于计算机而言,存储和处理信息的时候,通常以二进制的形式来表示(这些一连串的二进制数字称为位(bit))。因为二进制的形式能够很容易地被表示,存储和传输。

在程序中,即使是用十进制数和文字等记述信息,在编译后也会转换成二进制的值
如图:
在这里插入图片描述
对于用二进制数表示的信息,计算机不会区分它是数值,文字,还是某种图片的模式等,而是根据编写程序的各位对计算机发出的指示来进行信息的处理(运算)。

那么接下来让我们深入理解数据在计算机中是如何存储的吧

一、2进制和进制转化

为什么要使用2进制的形式表示信息

其实所谓的2进制,8进制,16进制以及我们日常使用的十进制都是一个数值的不同表示形式而已。至于计算机的信息数据为什么只能用二进制的计数方式这种形式,其实是取决于IC这种电子部件(这里不讲述IC是什么,有兴趣的伙伴自己搜一下)

二进制数的位数一般是8位,16位,32位,都是8的倍数,为什么呢?这是因为计算机处理的信息的基本单位是字节(也就是8个比特位),字节是最基本的信息计量单位。而所说的位是最小单位(注意区分)内存和磁盘都使用字节单位来存储和读写数据,使用位单位则无法读写数据。

各种进制如何转换

比如:数字15的各种进制的表示形式:

15的二进制:1111
15的八进制:17
15的十进制:15
15的十六进制:F(大小写都可以)

首先我们从10进制讲起吧,10进制比较常用,小孩子都知道的一个知识:

  • 10进制的数字每一位都是0到9的数字组成
  • 10进制中满十进一

那换成二进制也是同一个道理:

  • 二进制的数字由1和0组成
  • 二进制中满二进一

比如上面15的二进制1111就是二进制数字

权重和二进制如何转换为十进制

那你有没有想过十进制的123为什么就是123呢?
其实10进制的每一位是权重的(权重也称位权),10进制的数字从右向左是个位,十位,百位……,每一位分别的权重是10的零次方,10的一次方,10的二次方……,以此类推。
如图所示:
在这里插入图片描述
这种方式也同样适合二进制数,即第一位(上图的个位)是2的零次方,第二位(上图的十位)是2的一次方,第三位是2的二次方……
在这里插入图片描述
各位初学的伙伴用上面的方式将开头的所说1111拿来练练吧,看看是如何将1111转换为15的

十进制如何转为二进制

那十进制又如何转换成二进制的呢???

方法很简单,将一个10进制的数整除2之后得到的余数先保留下来,接着往下除,直到10进制的数不能再被2整除即可,如图所示:
在这里插入图片描述

二进制如何转八进制

8进制的数字由0到7组成,0~7的数字,各自写成2进制,最多有3个2进制位就足够了,比如7的2进制是111,所以在2进制转8进制的时候,从2进制序列中从右边低位开始向左每3个2进制位会换算成一个8进制位,剩余不够3个2进制位的直接换算。

如:2进制的01 101 011,换成8进制就是:0153(0开头的数字会被当做8进制
在这里插入图片描述

2进制如何转16进制

16进制的数字每一位由0~9,a到f组成,各自写成2进制,最多有4个2进制位就足够了

比如f的二进制是1111,所以在2进制转16进制的时候,从2进制序列中右边低位开始向左每4个2进制位换算成一个16进制位,剩余不够4个2进制的直接换算。
比如:2进制的0110 1011,换成16进制为:0x6b(0110为6,1011为b)注意:16进制表示的时候前面加0x

如图所示:
在这里插入图片描述

原码、补码、反码

整数的2进制表示方法有三种,即原码,补码,反码

有符号整数的三种表示方法均有符号位和数值位两部分,2进制序列中,最高位的1位为符号位,其他都是数值位。

符号位都是用0表示一个数为正数,用1表示一个数为负数

特别的是:正整数的原码,反码,补码都相同
负整数的三种表示方法各不相同

  • 原码:直接将数值按照正负数的形式翻译成二进制得到的就是原码
  • 反码:原码的符号位不变,将其他位依次按位取反得到的就是反码
  • 补码:反码+1得到的就是补码
    反码得到原码也是可以使用:取反,+1的操作

对于整型来说:数据存放内存中其实存放的是补码
在计算机中,数值一律用补码来表示和存储。

原因:使用补码,可以将符号位和数值域统一处理,同时,加法和减法也可以统一处理(CPU只有加法器,计算机在做减法运算时,实际上内部是在做加法运算,是不是感觉很神奇),此外,补码和原码相互转换,其运算过程是相同的,不需要额外的硬件电路。

三、移位运算

了解完二进制数的机制后,接下来我们来看一下运算,和10进制数一样,四则运算同样也可以使用在二进制中,主要注意逢二进一就行。

首先来解释一下什么是移位运算。移位运算指的是将二进制数值的各数位进行左右移位的运算。

如何进行移位运算呢,这里就要来介绍两个移位操作符了

  • <<左移操作符
  • >>右移操作符

注意:移位操作符的操作数只能是整数

左移操作符

移动的规则:左边抛弃,右边补零
例如以下代码:

#include <stdio.h>
int main()
{int num = 10;int n = num << 1;//这里的1表示向左移动一个比特位,后面有图printf("n= %d\n", n);printf("num= %d\n", num);return 0;
}

运行结果显示:
在这里插入图片描述
在这里插入图片描述

右移操作符

移动规则:首先右移运算分两种:

  1. 逻辑右移:左边用0填充,右边丢弃
  2. 算术右移:左边用原该值的符号位填充,右边丢弃
#include <stdio.h>
int main()
{
int num = 10;
int n = num>>1;
printf("n= %d\n", n);
printf("num= %d\n", num);
return 0;
}

运行结果显示:
在这里插入图片描述
这是逻辑右移:(这里的补码是什么后面的章节会一一介绍)
在这里插入图片描述
这是算术右移:
在这里插入图片描述
警告:对于移位运算符,不要移动负数位,这个是标准未定义的
如:

int num = 10;
num>>-1;//这是错误的

右移到底是算术右移还是逻辑右移取决于编译器的实现
大部分的编译器上是算术右移

小结:
逻辑右移:

  • 对应无符号整数,逻辑右移和算术右移效果是一样的。
  • 对于带符号整数,逻辑右移会在左侧填充零。这意味着无论正负,都在左侧填充零位。
  • 逻辑右移通常用于无符号整数或者希望右移时左侧补零的情况

算术右移:

  • 对于带符号整数,算术右移会在左侧填充符号位的值。如果原数是正数,就在左侧填充零,如果原数是负数,就在左侧填充一位1。
  • 算术右移用于带符号整数,以保持负数的符号位。

位操作符

1、按位与 &

计算规则:对应的二进制进行与运算,只要有0就是0,两个同时为1才是1
例如:

int main()
{int a = 3;int b = -5;int ret = a & b;printf("%d", ret);return 0;
}

解释:

3的补码:00000000000000000000000000000011
-5的原码:1000000000000000000000000000101
-5的反码:11111111111111111111111111111111010
-5的补码:11111111111111111111111111111111011

在这里插入图片描述

运行结果:
在这里插入图片描述

2、按位或 |

计算规则:对应的二进制位进行或运算,只要有1就是1,两个同时为0才是0

int main()
{int a = 3;int b = -5;int ret = a | b;printf("%d", ret);return 0;
}

3的补码: 00000000000000000000000000000011
-5的原码:10000000000000000000000000000101
-5的反码:11111111111111111111111111111010
-5的补码:11111111111111111111111111111011

在这里插入图片描述
运行结果:
在这里插入图片描述

3、按位异或 ^

计算规则:对应的二进制位进行异或运算,相同为0,相异为1

int main()
{int a = 3;int b = -5;int ret = a ^ b;printf("%d", ret);return 0;
}

运行结果:
在这里插入图片描述
这里不一一解释了,各位可以动手运算一下

4、按位取反 ~

计算规则:将自身的二进制位进行取反操作,即0转1,1转0

1的补码:00000000000000000000000000000001
取反操作后:11111111111111111111111111111110(补码)
反码:10000000000000000000000000000001
原码:10000000000000000000000000000010(-2)

int main()
{int a = 1;int b = ~a;printf("%d", b);return 0;
}

总结

本文内容比较多,只要掌握了使用二进制数来表示信息的方法及其运算机制,也就自然能够了解程序的运行机制了

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/204257.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

Verilog开源项目——百兆以太网交换机(四)令牌桶管理单元设计

Verilog开源项目——百兆以太网交换机&#xff08;四&#xff09;令牌桶管理单元设计 &#x1f508;声明&#xff1a;未经作者允许&#xff0c;禁止转载 &#x1f603;博主主页&#xff1a;王_嘻嘻的CSDN主页 &#x1f511;全新原创以太网交换机项目&#xff0c;Blog内容将聚焦…

前缀和|二分查找|LeetCode2234| 花园的最大总美丽值

作者推荐 贪心算法LeetCode2071:你可以安排的最多任务数目 本文涉及的基础知识点 C算法&#xff1a;前缀和、前缀乘积、前缀异或的原理、源码及测试用例 包括课程视频 二分查找算法合集 题目 Alice 是 n 个花园的园丁&#xff0c;她想通过种花&#xff0c;最大化她所有花…

pycharm中debug,py文件

1、先把需要的实参传入 2、在合适位置打上断点 3、在小三角旁边右键调用调试 4.步进/步出查看 5.选择单步执行&#xff0c;走的更慢

使用Python实现爬虫IP负载均衡和高可用集群

做大型爬虫项目经常遇到请求频率过高的问题&#xff0c;这里需要说的是使用爬虫IP可以提高抓取效率&#xff0c;那么我们通过什么方法才能实现爬虫IP负载均衡和高可用集群&#xff0c;并且能快速的部署并且完成爬虫项目。 通常在Python中实现爬虫ip负载均衡和高可用集群需要一…

基于ssm助学贷款网站论文

摘 要 现代经济快节奏发展以及不断完善升级的信息化技术&#xff0c;让传统数据信息的管理升级为软件存储&#xff0c;归纳&#xff0c;集中处理数据信息的管理方式。本助学贷款管理系统就是在这样的大环境下诞生&#xff0c;其可以帮助管理者在短时间内处理完毕庞大的数据信息…

CTF 7

信息收集 存活主机探测 arp-scan -l 端口探测 nmap -sT --min-rate 10000 -p- 192.168.0.5 服务版本等信息 nmap -sT -sV -sC -O -p22,80,137,138,139,901,5900,8080,10000 192.168.0.5Starting Nmap 7.94 ( https://nmap.org ) at 2023-11-02 21:23 CST Stats: 0:01:30 elaps…

​劲松中西医结合医院专家讲解hpv36阳性是否严重

​劲松中西医结合医院专家讲解hpv36阳性严重性问题 HPV36阳性&#xff0c;就像一场潜在的暴风雨&#xff0c;预示着可能的危机。它代表了一种高危型的HPV感染&#xff0c;就像一只隐藏在暗处的猛兽&#xff0c;随时可能暴起伤人。然而&#xff0c;就像生活中的许多挑战&#x…

Python 在控制台打印带颜色的信息

#格式&#xff1a;  设置颜色开始 &#xff1a;\033[显示方式;前景色;背景色m #说明&#xff1a; 前景色 背景色 颜色 --------------------------------------- 30 40 黑色 31 41 红色 32 …

Linux环境下ARM开发

目录 前言ARM启动及开发基础1.Cortex-A架构2.启动方式3.汇编基础4.Makefile语法基础5.Makefile补充6.编译下载 结语 前言 主要介绍基于linux开发环境下&#xff0c;如何开发ARM A7 ARM启动及开发基础 1.Cortex-A架构 1&#xff09;Cortex-A7运行模式 模式说明User(USR)用户模…

RK3588 平台的libevent库的交叉编译

1、下载libevent库&#xff0c;官网https://libevent.org/ 2、解压 3、配置 ./configure --prefix/home/harmony/Lib_self/cross --hostarm-linux-gnueabihf CCaarch64-linux-gnu-gcc --prefix指定安装目录, --host指定将要运行的特定平台 CC指定C语言的编译器 CXX指定C语言…

智能化转型比想象中更难,九牧智能马桶深陷口碑危机

智能化浪潮正深刻改变着消费者日常生活的方方面面&#xff0c;也推动着传统卫浴品牌面向智能化转型的步伐。 而在一众耳熟能详的中国卫浴品牌中&#xff0c;九牧可以称得上是面向数字化、智能化、高端化转型的先锋。 就在近日&#xff0c;九牧刚刚举行了一场盛大的第1000万套…

销售技巧培训之如何提升销售沟通技巧

销售技巧培训之如何提升销售沟通技巧 现在市场环境竞争越来越激烈&#xff0c;产品越来越过剩&#xff0c;如何把产品卖出去是摆在企业面前的难题。所以打造一致所向披靡的销售团队&#xff0c;提升销售人员的系统化销售能力就显得非常重要。在销售系统培训模块中&#xff0c;…

Python第三次练习

Python 一、如何判断一个字符串是否是另一个字符串的子串二、如何验证一个字符串中的每一个字符均在另一个字符串中出现三、如何判定一个字符串中既有数字又有字母四、做一个注册登录系统 一、如何判断一个字符串是否是另一个字符串的子串 实现代码&#xff1a; string1 inp…

安装node.js并创建第一个vue项目

目录 一&#xff0c;下载node.js 二&#xff0c;创建一个vue项目 一&#xff0c;下载node.js 1.进入官网&#xff1a;Node.js (nodejs.org) 2.选择版本 3.选择安装方式 4.运行安装包&#xff0c;下载文件 5.选择要安装的路径后一直next 6.安装完成后打开命令提示符&#xff…

python获取js data.now同款时间戳

import requestsimport time from datetime import datetimecu_t datetime.now() se cu_t.timestamp()*1000 se int(se) print(se)#cur_time time.time()*1000 #seconds int(cur_time) #print(seconds)

C++——红黑树

作者&#xff1a;几冬雪来 时间&#xff1a;2023年12月7日 内容&#xff1a;C——红黑树讲解 目录 前言&#xff1a; 红黑树的概念&#xff1a; 红黑树的性质&#xff1a; 红黑树的路径计算&#xff1a; 最长路径和最短路径&#xff1a; AVL树与红黑树的区别&#xff…

【Docker】Swarm的overlay网络

对于理解swarm的网络来讲&#xff0c;个人认为最重要的两个点&#xff1a; 第一是外部如何访问部署运行在swarm集群内的服务&#xff0c;可以称之为入方向流量&#xff0c;在swarm里我们通过ingress来解决。 第二是部署在swarm集群里的服务&#xff0c;如何对外进行访问&…

力扣题:字符的统计-12.6

力扣题-12.6 [力扣刷题攻略] Re&#xff1a;从零开始的力扣刷题生活 力扣题1&#xff1a;696. 计数二进制子串 解题思想&#xff1a;先统计连续的0和连续的1的个数&#xff0c;然后进行相加即可&#xff08;想不到一点&#xff09; class Solution(object):def countBinaryS…

EI级 | Matlab实现TCN-LSTM-Multihead-Attention多头注意力机制多变量时间序列预测

EI级 | Matlab实现TCN-LSTM-Multihead-Attention多头注意力机制多变量时间序列预测 目录 EI级 | Matlab实现TCN-LSTM-Multihead-Attention多头注意力机制多变量时间序列预测预测效果基本介绍程序设计参考资料 预测效果 基本介绍 1.【EI级】Matlab实现TCN-LSTM-Multihead-Attent…

egen3 rowwise().maxCoeff()的使用

1、安装eigen3 2、引用头文件 3、代码测试 MatrixXf aaa(2, 4);aaa << 1, 2, 3, 4, 5, 6, 7, 8; Vector2f diff(10, 20);aaa.colwise() diff;std::cout << "new_aaa : " << aaa << endl; 全部代码&#xff1a; int main() {MatrixXf …