ELK 日志解决方案

在这里插入图片描述

ELK 是目前最流行的集中式日志解决方案,提供了对日志收集、存储、展示等一站式的解决方案。

ELK 分别指 Elasticsearch、Logstash、Kibana。

  1. Elasticsearch:分布式数据搜索引擎,基于 Apache Lucene 实现,可集群,提供数据的集中式存储,分析,以及强大的数据搜索和聚合功能。
  2. Logstash:数据收集引擎,相较于Filebeat 比较重量级,但它集成了大量的插件,支持丰富的数据源收集,对收集的数据可以过滤,分析,格式化日志格式。
  3. Kibana:数据的可视化平台,通过该 web 平台可以实时查看 Elasticsearch 中的相关数据,并提供了丰富的图表统计功能。
  4. Filebeat:Filebeat 是一款轻量级,占用服务资源非常少的数据收集引擎,它是 ELK 家族的新成员,可以代替 Logstash 作为在应用服务器端的日志收集引擎,支持将收集到的数据输出到 Kafka,Redis 等队列。

一、Elasticsearch

1.1 安装配置

1.1.1 拉取镜像
[root@localhost software]# docker pull elasticsearch:7.17.7
1.1.2 配置文件

第一步:在 Linux 上创建三个数据挂载目录。
在这里插入图片描述
第二步:在 conf 目录下创建 elasticsearch.yml 文件,并修改权限为777。

[root@localhost elasticsearch]# cd conf/
[root@localhost conf]# touch elasticsearch.yml
[root@localhost conf]# chmod 777 elasticsearch.yml 
[root@localhost conf]# ll
总用量 0
-rwxrwxrwx. 1 root root 0 125 11:03 elasticsearch.yml

配置内容如下:
在这里插入图片描述

http:host: 0.0.0.0cors:enabled: trueallow-origin: "*"
xpack:security:enabled: false
1.1.3 修改 Linux 的 vm.max_map_count

直接启动后会报下面的异常

max virtual memory areas vm.max_map_count [65530] is too low, increase to at least [262144]

表示系统虚拟内存默认最大映射数为65530,无法满足ES系统要求,需要调整为262144以上。

修改方法如下:
查看 sysctl -a|grep vm.max_map_count
修改 sysctl -w vm.max_map_count=262144

1.2 创建运行

docker run  -itd \
--name es \
--privileged \
--network docker_net \
--ip 172.18.12.80 \
-p 9200:9200 \
-p 9300:9300 \
-e "discovery.type=single-node" \
-e ES_JAVA_OPTS="-Xms4g -Xmx4g" \
-v /usr/local/software/elk/elasticsearch/conf/elasticsearch.yml:/usr/share/elasticsearch/config/elasticsearch.yml \
-v /usr/local/software/elk/elasticsearch/data:/usr/share/elasticsearch/data \
-v /usr/local/software/elk/elasticsearch/plugins:/usr/share/elasticsearch/plugins \
elasticsearch:7.17.7

容器创建并运行成功后,我们在浏览器里面访问 虚拟机地址:9200,出现内容表示运行成功。
在这里插入图片描述

1.3 ES 的分词器

1.3.1 下载并上传分词器到 Linux 中

下载链接:https://github.com/medcl/elasticsearch-analysis-ik/releases
注意:需下载和 es 一致的版本,避免出错。

上传到 /usr/local/software/elk/plugins/目录下。

1.3.2 拷贝分词器插件到容器 ik 文件夹
[root@localhost plugins]# docker cp elasticsearch-analysis-ik-7.17.7.zip es:/usr/share/elasticsearch/plugins/ik
1.3.3 解压分词器

进入容器 ik 文件夹下面(没有ik文件夹就手动创建),解压插件。
解压:

unzip elasticsearch-analysis-ik-7.17.7.zip

解压完将压缩包删除,并记得重启容器。

二、Kibana

2.1 安装

安装 Kibana 前需保证 ES 已经运行成功。

2.1.1 拉取镜像
docker pull kibana:7.17.7

注意版本尽量保持一致。

2.1.2 创建并运行容器
docker run -it \
--name kibana \
--privileged \
--network docker_net \
--ip 172.18.12.81 \
-e "ELASTICSEARCH_HOSTS=http://192.168.200.135:9200" \
-p 5601:5601 \
-d kibana:7.17.7
2.1.3 测试

浏览器打开 http://虚拟机地址:5601/ 成功进入即表示运行成功。
在这里插入图片描述

2.2 简单使用

  1. 打开 Dev Tools
    在这里插入图片描述
  2. 执行查询,可看到出现右面的数据
    在这里插入图片描述

2.3 测试分词器

2.3.1 标准分词器

在这里插入图片描述
如上图所示,标准分词器对中文不太友好。

2.3.2 ES 分词器

在这里插入图片描述
如上图所示,es 分词器对中文分词好一点,但是还是不够灵活。所以我们可以自定义一下 es 的分词器词典。

2.3.3 自定义 es 分词器词典
  1. 进入 es 容器的 ik/config 目录
    在这里插入图片描述
  2. 查看配置文件
    在这里插入图片描述
    注意:ext_dict_my.dic 是我自定义的词典文件,默认没有。
  3. 编写自己的配置文件
    在这里插入图片描述
  4. 重启容器,并测试 。

三、Logstash

3.1 安装

3.1.1 拉取 logstash
[root@localhost ~]# docker pull logstash:7.17.7
3.1.2 创建容器
docker run -it \
--name logstash \
--privileged \
-p 5044:5044 \
-p 9600:9600 \
--network docker_net \
--ip 172.18.12.82 \
-v /etc/localtime:/etc/localtime \
-d logstash:7.17.7

3.2 容器配置

有三个配置文件,分别是
在这里插入图片描述
在这里插入图片描述
我们在宿主机创建一个 logstash 文件夹( /usr/local/software/elk/logstash),将三个配置文件复制到这个目录下,方便编辑。

logstash.yml

path.logs: /usr/share/logstash/logs
config.test_and_exit: false
config.reload.automatic: false
http.host: "0.0.0.0"
xpack.monitoring.elasticsearch.hosts: [ "http://192.168.200.135:9200" ]

piplelines.xml

- pipeline.id: mainpath.config: "/usr/share/logstash/pipeline/logstash.conf"

logstash.conf

input {tcp {mode => "server"host => "0.0.0.0"port => 5044codec => json_lines}
}
filter{
}
output {elasticsearch {hosts => ["192.168.200.135:9200"]       #elasticsearch的ip地址 index => "elk"                          #索引名称}stdout { codec => rubydebug }
}

修改完成后,将配置文件拷贝到容器相应位置,并重启容器。

3.3 释放端口

 firewall-cmd --add-port=9600/tcp --permanent firewall-cmd --add-port=5044/tcp --permanentfirewall-cmd --reload

四、springboot 中使用 logstash

4.1 引入框架

<dependency><groupId>net.logstash.logback</groupId><artifactId>logstash-logback-encoder</artifactId><version>7.3</version>
</dependency>

4.2 创建 logback-spring.xml

<?xml version="1.0" encoding="UTF-8"?>
<!-- 日志级别从低到高分为TRACE < DEBUG < INFO < WARN < ERROR < FATAL,如果设置为WARN,则低于WARN的信息都不会输出 -->
<!-- scan:当此属性设置为true时,配置文档如果发生改变,将会被重新加载,默认值为true -->
<!-- scanPeriod:设置监测配置文档是否有修改的时间间隔,如果没有给出时间单位,默认单位是毫秒。当scan为true时,此属性生效。默认的时间间隔为1分钟。 -->
<!-- debug:当此属性设置为true时,将打印出logback内部日志信息,实时查看logback运行状态。默认值为false。 -->
<configuration scan="true" scanPeriod="10 seconds"><!--1. 输出到控制台--><appender name="CONSOLE" class="ch.qos.logback.core.ConsoleAppender"><!--此日志appender是为开发使用,只配置最低级别,控制台输出的日志级别是大于或等于此级别的日志信息--><filter class="ch.qos.logback.classic.filter.ThresholdFilter"><level>DEBUG</level></filter><encoder><pattern>%d{yyyy-MM-dd HH:mm:ss.SSS} -%5level ---[%15.15thread] %-40.40logger{39} : %msg%n</pattern><!-- 设置字符集 --><charset>UTF-8</charset></encoder></appender><!-- 2. 输出到文件  --><appender name="FILE" class="ch.qos.logback.core.rolling.RollingFileAppender"><!--日志文档输出格式--><append>true</append><encoder><pattern>%d{yyyy-MM-dd HH:mm:ss.SSS} -%5level ---[%15.15thread] %-40.40logger{39} : %msg%n</pattern><charset>UTF-8</charset> <!-- 此处设置字符集 --></encoder></appender><!--3. LOGSTASH config --><appender name="LOGSTASH" class="net.logstash.logback.appender.LogstashTcpSocketAppender"><destination>192.168.200.135:5044</destination><encoder charset="UTF-8" class="net.logstash.logback.encoder.LogstashEncoder"><!--自定义时间戳格式, 默认是yyyy-MM-dd'T'HH:mm:ss.SSS<--><timestampPattern>yyyy-MM-dd HH:mm:ss</timestampPattern><customFields>{"appname":"QueryApp"}</customFields></encoder></appender><root level="DEBUG"><appender-ref ref="CONSOLE"/><appender-ref ref="FILE"/><appender-ref ref="LOGSTASH"/></root>
</configuration>

注意这个地址,需配置 es 的地址。
在这里插入图片描述
文件存放位置
在这里插入图片描述

4.3 测试代码

@Slf4j
@RestController
@RequestMapping("/api/query")
public class QueryController {@Autowiredprivate IBookDocService ibs;@GetMapping("/helloLog")public HttpResp helloLog(){List<BookDoc> all = ibs.findAll();log.debug("从es中查询到的数据:{}",all);log.debug("我是来测试logstash是否工作的");return HttpResp.success(all.subList(0,10));}
}

4.4 Kibana 中查看

4.4.1 创建一个索引
put elk

elk 名称是之前 logstash.conf 文件中配置的。

在这里插入图片描述

4.4.2 创建索引模式

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
执行操作,如搜索。
在这里插入图片描述

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/203396.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

B 站基于 StarRocks 构建大数据元仓

作者&#xff1a;bilibili 大数据高级开发工程师 杨洋 B站大数据元仓是一款用来观测大数据引擎运行情况、推动大作业治理的系统诊断产品。经过调研和性能测试&#xff0c;大数据元仓最终以 StarRocks 为技术底座&#xff0c;从实际的应用效果来看&#xff0c;大部分查询都能在几…

mvn site 命令

概述 在Maven中&#xff0c;site指的是一个特定的阶段&#xff0c;其目的是生成项目相关的站点文档。这些站点文档可以为项目的开发者、用户、以及其他利益相关者提供有关项目的详细信息。 Maven的站点文档通常包括以下内容&#xff1a; 项目信息&#xff1a;这部分提供了关于…

Mysql大数据量删除

Mysql大数据量删除 在一些操作中&#xff0c;可能需要清理一下积压的数据&#xff0c;如果数据量小的话自然没有问题&#xff0c;但是如果是个大数据量的问题&#xff0c;那么就该考虑一个合适的办法了。 在清理大数据量的时候需要考虑是清理部分数据还是清理所有数据&#xf…

【微服务】分布式限流如何实现

Sentinel 是一款阿里巴巴开源的分布式系统级流量控制组件&#xff0c;它提供了流量的自适应控制、熔断降级、系统负载保护等功能。下面是使用 Sentinel 实现分布式限流方案的基本步骤&#xff1a; 引入 Sentinel 依赖&#xff1a;首先在你的 Java 项目中引入 Sentinel 的相关依…

Stm32_串口的帧(不定长)数据接收

目录标题 前言1、串口中断接收固定帧头帧尾数据1.1、任务需求1.2、实现思路1.3、程序源码&#xff1a; 2、串口中断接收用定时器来判断帧结束3、串口中断接收数据空闲中断3.1、串口的空闲中断3.2、实现思路3.3、程序源码 4、串口的空闲中断DMA转运4.1、DMA简介4.2、DMA模式4.3、…

AHB 与 DMA

AHB&#xff08;先进高性能总线&#xff09; 随着深亚微米工艺技术日益成熟&#xff0c;集成电路芯片的规模越来越大。数字IC从基于时序驱动的设计方法&#xff0c;发展到基于IP核复用的设计方法&#xff0c;并在SOC设计中得到了广泛应用。在基于IP核复用的SoC&#xff08;Syst…

【BME2112】w11 notes

下周做老鼠实验 group analysis SPM group analysis 数据地址resting state 可以分析&#xff1a;correlation 计算两个脑区的相关性 静息态实验简单functional 成功的实验能看到激活区不成功的实验&#xff1a;比如被试头动太大&#xff0c;不是健康的被试 Spontaneous brain…

ThreeJs中使用Cannon实现方块自由落体效果

之前有做过小球的掉落效果&#xff0c;不过那个从画面上只能看出来重力加速度和接触地面反弹的效果&#xff0c;可能没有那么直观&#xff0c;也许用一些js加物理公式也能实现类似的效果&#xff0c;这节用小方块来演示&#xff0c;可以很直观的看出物理世界的现象&#xff0c;…

ALPHA开发板烧录工具MfgTool烧写方法

一. 简介 MfgTool 工具是 NXP 提供的专门用于给 I.MX 系列 CPU 烧写系统的软件&#xff0c;可以在 NXP 官网下载到。运行在windows下。可以烧写uboot.imx、zImage、dtb&#xff0c;rootfs。通过 USB口进行烧写。 上一篇文章简单了解了 ALPHA开发板烧录工具MfgTool。文章地址…

数据结构之交换排序

目录 交换排序 冒泡排序 冒泡排序的时间复杂度 快速排序 快速排序单趟排序的时间复杂度 快速排序的时间复杂度 交换排序 在日常生活中交换排序的使用场景是很多的&#xff0c;比如在学校做早操&#xff0c;老师通常会让学生按大小个排队&#xff0c;如果此时来了一个新学…

MySQL系列(一):索引篇

为什么是B树&#xff1f; 我们推导下&#xff0c;首先看下用哈希表做索引&#xff0c;是否可以满足需求。如果我们用哈希建了索引&#xff0c;那么对于如下这种SQL&#xff0c;通过哈希&#xff0c;可以快速检索出数据&#xff1a; select * from t_user_info where id1;但是这…

ThreadX开源助力Microsoft扩大应用范围:对比亚马逊AWS的策略差异

全球超过120亿台设备正在运行ThreadX&#xff0c;这是一款专为资源受限环境设计的实时操作系统。该操作系统在微控制器和小型处理器上表现出色&#xff0c;以极高的可靠性和精确的时间控制处理任务而闻名。 ThreadX曾是英特尔芯片管理引擎的引擎&#xff0c;并且是控制Raspber…

JavaScript 宿主对象

JavaScript 宿主对象 BOM window 全局对象 window对象是可以直接被访问到的每一个用var声明的变量都会自动作为window对象的属性存在 function声明的函数也会自动作为window对象的方法存在访问window对象的属性和方法可以不用写window 属性 innerWidth 获取浏览器窗口的宽度…

AWS基于x86 vs Graviton(ARM)的RDS MySQL性能对比

概述 这是一个系列。在前面&#xff0c;我们测试了阿里云经济版&#xff08;“ARM”&#xff09;与标准版的性能/价格对比&#xff1b;华为云x86规格与ARM&#xff08;鲲鹏增强&#xff09;版的性能/价格对比。现在&#xff0c;再来看看AWS的ARM版本的RDS情况 在2018年&#…

User: zhangflink is not allowed to impersonate zhangflink

使用hive2连接进行添加数据是报错&#xff1a; [08S01][1] Error while processing statement: FAILED: Execution Error, return code 1 from org.apache.hadoop.hive.ql.exec.mr.MapRedTask. User: zhangflink is not allowed to impersonate zhangflink 有些文章说需要修…

配置OSS后如何将服务器已有文件上传至OSS,推荐使用ossutil使用

1.下载安装ossutil sudo -v ; curl https://gosspublic.alicdn.com/ossutil/install.sh | sudo bash2.交互式配置生成配置文件 ossutil config 根据提示分别设置配置文件路径、设置工具的语言、Endpoint、AccessKey ID、AccessKey Secret和STSToken参数&#xff0c;STSToken留…

自定义BeanPostProcessor之Feign组件服务间优雅调用

Feign是什么 feign是声明式的web service客户端&#xff0c;它让微服务之间的调用变得更简单了&#xff0c;类似controller调用service。Spring Cloud集成了Ribbon和Eureka&#xff0c;可在使用Feign时提供负载均衡的http客户端。 Feign怎么使用 FeignClient(value "s…

【Axure高保真原型】个性化自定义图片显示列表

今天和大家分享个性化自定义图片显示列表的原型模板&#xff0c;鼠标点击多选按钮&#xff0c;可以切换按钮选中或者取消选中&#xff0c;按钮选中时&#xff0c;对应图片会在列表中显示&#xff0c;按钮取消后&#xff0c;对应图片会自动隐藏。那这个模板是用中继器制作的&…

系统设计-缓存介绍

该图说明了我们在典型架构中缓存数据的位置。 沿着流程有多个层次。 客户端应用程序&#xff1a;HTTP 响应可以由浏览器缓存。我们第一次通过 HTTP 请求数据&#xff0c;返回时在 HTTP 标头中包含过期策略&#xff1b;我们再次请求数据&#xff0c;客户端应用程序首先尝试从浏…

前端实现检索文本高亮实现

文章目录 一、前言二、实现三、最后 一、前言 使用搜索引擎时的搜索结果高亮&#xff0c;搜索文本在查询出来的结果内高亮显示&#xff0c;这种在全文检索应该很常见 二、实现 看了下百度检索的实现&#xff0c;是给内容加上了em标签&#xff0c;然后给em标签设置颜色&#x…