一键抠图1:Python实现人像抠图 (Portrait Matting)

一键抠图1:Python实现人像抠图 (Portrait Matting)

目录

一键抠图1:Python实现人像抠图 (Portrait Matting)

1. 项目介绍

2. 抠图算法

3. Matting数据集

4. MODNet模型

 (1) 项目安装

 (2) 数据集说明

 (3) MODNet模型

5. Demo测试效果 

6. 源码下载(Python)

7.人像抠图C++版本

8.人像抠图Android版本


1. 项目介绍

抠图算法(英文中,一般称为Matting)有多种实现方式,一种是基于辅助信息输入的,加入一些先验信息(如Trimap,背景图,用户交互信息,深度等信息)提供抠图效果,如比较经典的Deep Image Matting和Semantic Image Matting这些算法加入Trimap; Background Matting算法需要提供背景图等;另一种是无需辅助信息,输入RGB图像,直接预测matte的方法,其效果相对第一种方法,会差很多。而对Portrait Matting(人像抠图),现在有很多方案在无需Trimap条件下,也可以获得不错的抠图效果,比如MODNet,Fast Deep Matting等算法,真正实现一健抠图的效果。

本篇博客是一键抠图项目系列之《Python实现人像抠图 (Portrait Matting)》,项目将在MODNet人像抠图算法基础上进行模型压缩和优化,开发一个效果相当不错的Matting算法,可以达到头发细致级别的人像抠图效果,为了方便后续模型工程化和Android平台部署,项目提供高精度版本人像抠图和轻量化快速版人像抠图,并提供Python/C++/Android多个版本;

尊重原创,转载请注明出处】https://blog.csdn.net/guyuealian/article/details/134784803

Android Demo APP下载地址:https://download.csdn.net/download/guyuealian/63228759

先展示一下一键人像抠图效果:


更多项目《一键抠图》系列文章请参考:

  1. 一键抠图1:Python实现人像抠图 (Portrait Matting)https://blog.csdn.net/guyuealian/article/details/134784803
  2. 一键抠图2:C/C++实现人像抠图 (Portrait Matting)https://blog.csdn.net/guyuealian/article/details/134790532
  3. 一键抠图3:Android实现人像抠图 (Portrait Matting)https://blog.csdn.net/guyuealian/article/details/134801795


2. 抠图算法

基于深度学习的Matting分为两大类:

  • 一种是基于辅助信息输入。即除了原图和标注图像外,还需要输入其他的信息辅助预测。最常见的辅助信息是Trimap,即将图片划分为前景,背景及过度区域三部分。另外也有以背景或交互点作为辅助信息。

  • 一种是不依赖任何辅助信息,直接对Alpha进行预测。如本博客复现的MODNet

第一种方法,需要加入辅助信息,而辅助信息一般较难获取,这也限制其应用,为了提升Matting的应用性,针对Portrait Matting领域MODNet摒弃了辅助信息,直接实现Alpha预测,实现了实时Matting,极大提升了基于深度学习Matting的应用价值。

更多抠图算法(Matting),请参考我的一篇博客《图像抠图Image Matting算法调研》:

图像抠图Image Matting算法调研_image matting调研-CSDN博客文章浏览阅读4.3k次,点赞8次,收藏68次。1.Trimap和StrokesTrimap和Strokes都是一种静态图像抠图算法,现有静态图像抠图算法均需对给定图像添加手工标记以增加抠图问题的额外约束。Trimap,三元图,是对给定图像的一种粗略划分,即将给定图像划分为前景、背景和待求未知区域Strokes则采用涂鸦的方式在图像上随意标记前景和背景区域,剩余未标记部分则为待求的未知区域Trimap是最常用的先验知识,多数抠图算法采用了Trimap作为先验知识,顾名思义Trimap是一个三元图,每个像素取值为{0,128,..._image matting调研https://blog.csdn.net/guyuealian/article/details/119648686可能,有小伙伴搞不清楚分割(segmentation)和抠图(matting)有什么区别,我这里简单说明一下:

  •  分割(segmentation):从深度学习的角度来说,分割本质是像素级别的分类任务,其损失函数最简单的莫过于是交叉熵CrossEntropyLoss(当然也可以是Focal Loss,IOU Loss,Dice Loss等);对于前景和背景分割任务,输出Mask的每个像素要么是0,要么是1。如果拿去直接做图像融合,就很不自然,Mask边界很生硬,这时就需要使用抠图算法了
  •  抠图(matting): 而抠图本质是一种回归任务,其损失函数可以是MSE Loss,L1 Loss,L2 Loss等,对于前景和背景抠图任务,输出Mask的每个像素是0~1之间的连续值,可看作是对图像透明通道(Alpha)的回归预测。可以用公式表示为C = αF + (1-α)B ,其中α(不透明度)、F(前景色)和B(背景色),alpha是[0, 1]之间的连续值,可以理解为像素属于前景的概率。在人像分割任务中,alpha只能取0或1,而抠图任务中,alpha可取[0, 1]之间的连续值,
  • 本质上就是一句话:分割是分类任务,而抠图是回归任务。

3. Matting数据集

一些开源的matting数据集

数据集

说明

matting_human_datasets

  • 本数据集为目前已知最大的人像matting数据集,包含34427张图像和对应的matting结果图。
  • 数据集由北京玩星汇聚科技有限公司高质量标注,使用该数据集所训练的人像软分割模型已商用。
  • 数据集中的原始图片来源于Flickr、百度、淘宝。经过人脸检测和区域裁剪后生成了600*800的半身人像。
  • GitHub - aisegmentcn/matting_human_datasets: 人像matting数据集,包含34427张图像和对应的matting结果图。
  • PS:Matting比较粗糙,没有达到头发细致抠图;不过数据比较大,可以作为pretrained数据集使用

Deep Image Matting

  • Adobe Research论文《Deep Image Matting》提供的Matting Dataset。大约有455张图片,论文将MSCOCO和PASCAL VOC当做背景图,与455张图片进行合成后,大概有45500张训练图片和1000张测试图片
  • 论文地址:https://sites.google.com/view/deepimagematting
  • 项目地址:GitHub - Joker316701882/Deep-Image-Matting: This is tensorflow implementation for paper "Deep Image Matting"
  • PS:该数据集发邮箱给作者申请即可,一般作为通用物体Matting数据集,比较精细;如果用于人像抠图,需要自行把含有人的图片挑选出来

PPM-100

  • PPM-100 是论文 MODNet (Github | Arxiv) 中提出的一个人像抠图基准,它包含了100张来自Flickr的人像图片,具有以下特点:

  • 精细标注 - 所有图像都被仔细标注并检查。
  • 丰富多样 - 图像涵盖全身/半身人像和各种姿态。
  • 高分辨率 - 图像的分辨率介于1080P和4K之间。
  • 自然背景 - 所有图像都包含原始无替换的背景。
  • 项目地址:GitHub - ZHKKKe/PPM: A High-Quality Photograpy Portrait Matting Benchmark

PPM-100下载:https://github.com/PaddlePaddle/PaddleSeg/tree/release/2.3/contrib/Matting

RealWorldPortrait-636

  • real-world portrait dataset
  • 项目地址:GitHub - yucornetto/MGMatting: This repository includes the official project of Mask Guided (MG) Matting, presented in our paper: Mask Guided Matting via Progressive Refinement Network

 Compsition-1k

  • 使用Deep Image Matting合成的数据集
  • 项目地址:GitHub - Yaoyi-Li/GCA-Matting: Official repository for Natural Image Matting via Guided Contextual Attention

HAttMatting

  • 项目地址:GitHub - yuhaoliu7456/CVPR2020-HAttMatting: Attention-Guided Hierarchical Structure Aggregation for Image Matting(CVPR2020)

 AM-2k

  • AM-2k contains 2,000 high-resolution natural animal images from 20 categories along with manually labeled alpha mattes. Some examples are shown as below, more can be viewed in the video demo (YouTube | bilibili | Google drive).

    AM-2k can be accessed from here (Google Drive | Baidu Wangpan (pw: 29r1)), please make sure that you have read this agreement before accessing the dataset. Please refer to the readme.txt in the dataset folder for more details.

  • 项目地址:GitHub - JizhiziLi/GFM: [IJCV 2022] Bridging Composite and Real: Towards End-to-end Deep Image Matting

BG-20k

  • BG-20k contains 20,000 high-resolution background images excluded salient objects, which can be used to help generate high quality synthetic data. Some examples are shown as below, more can be viewed in the video demo (YouTube | bilibili | Google drive).

    BG-20k can be accessed from here (Google Drive | Baidu Wangpan (pw: dffp)), please make sure that you have read this agreement before accessing the dataset. Please refer to the readme.txt in the dataset folder for more details.

  • 项目地址:GitHub - JizhiziLi/GFM: [IJCV 2022] Bridging Composite and Real: Towards End-to-end Deep Image Matting

VideoMatte240K

  • Background Matting V2 数据集

PhotoMatte85

其他的:

  • VideoMatte240K
  • PhotoMatte85
  • GitHub - thuyngch/Human-Segmentation-PyTorch: Human segmentation models, training/inference code, and trained weights, implemented in PyTorch
  • Automatic Portrait Segmentation for Image Stylization: 1800 images
  • Supervisely Person: 5711 images

4. MODNet模型

 (1) 项目安装

 整套工程项目基本结构如下:

 项目依赖python包请参考requirements.txt,使用pip安装即可:

numpy==1.21.6
matplotlib==3.2.2
Pillow==8.4.0
bcolz==1.2.1
easydict==1.9
onnx==1.8.1
onnx-simplifier==0.2.28
onnxoptimizer==0.2.0
onnxruntime==1.6.0
opencv-contrib-python==4.5.2.52
opencv-python==4.5.1.48
pandas==1.1.5
PyYAML==5.3.1
scikit-image==0.17.2
scikit-learn==0.24.0
scipy==1.5.4
seaborn==0.11.2
sklearn==0.0
tensorboard==2.5.0
tensorboardX==2.1
torch==1.7.1+cu110
torchvision==0.8.2+cu110
tqdm==4.55.1
xmltodict==0.12.0
pycocotools==2.0.2
pybaseutils==0.9.4
basetrainer

项目安装教程请参考(初学者入门,麻烦先看完下面教程,配置好开发环境):

  • 项目开发使用教程和常见问题和解决方法
  • 视频教程:1 手把手教你安装CUDA和cuDNN(1)
  • 视频教程:2 手把手教你安装CUDA和cuDNN(2)
  • 视频教程:3 如何用Anaconda创建pycharm环境
  • 视频教程:4 如何在pycharm中使用Anaconda创建的python环境

 (2) 数据集说明

关于训练数据如何生成的问题:

  • 原论文MODNet使用了PPM-100数据集+私有的数据集,并合成了大部分训练数据
  • 鄙人复现时,先使用matting_human_datasets数据集训练base-model当作pretrained模型;然后合并多个数据集(PPM-100 + RealWorldPortrait-636 + Deep Image Matting),采用背景图来自VOC+COCO+BG-20k ,一共合成了5W+的训练数据和500+的测试数据
  • 合成的方法有两种:方法1:利用公式:合成图 = 前景*alpha+背景*(1-alpha) ;方法二:前景+mask+背景通过GAN生成;

这是Python实现的背景合成,需要提供原始图像image,以及image的前景图像alpha,和需要合成的背景图像bg_img:

    def image_fusion(image: np.ndarray, alpha: np.ndarray, bg_img=(219, 142, 67)):"""图像融合:合成图 = 前景*alpha+背景*(1-alpha):param image: RGB图像(uint8):param alpha: 单通道的alpha图像(uint8):param bg_img: 背景图像,可以是任意的分辨率图像,也可以指定指定纯色的背景:return: 返回与背景合成的图像"""if isinstance(bg_img, tuple) or isinstance(bg_img, list):bg = np.zeros_like(image, dtype=np.uint8)bg_img = np.asarray(bg[:, :, 0:3] + bg_img, dtype=np.uint8)if len(alpha.shape) == 2:# alpha = cv2.cvtColor(alpha, cv2.COLOR_GRAY2BGR)alpha = alpha[:, :, np.newaxis]if alpha.dtype == np.uint8:alpha = np.asarray(alpha / 255.0, dtype=np.float32)sh, sw, d = image.shapebh, bw, d = bg_img.shaperatio = [sw / bw, sh / bh]ratio = max(ratio)if ratio > 1:bg_img = cv2.resize(bg_img, dsize=(math.ceil(bw * ratio), math.ceil(bh * ratio)))bg_img = bg_img[0: sh, 0: sw]image = image * alpha + bg_img * (1 - alpha)image = np.asarray(np.clip(image, 0, 255), dtype=np.uint8)return image

当然,为了方便JNI调用,我这里还实现C++版本图像合成算法,这部分图像处理的基本工具,都放在我的base-utils中

/**** 实现图像融合:out = imgBGR * matte + bg * (1 - matte)* Fix a Bug: 1-alpha实质上仅有B通道参与计算,多通道时(B,G,R),需改Scalar(1.0, 1.0, 1.0)-alpha* @param imgBGR 输入原始图像* @param matte  输入原始图像的Mask,或者alpha,matte* @param out    输出融合图像* @param bg     输入背景图像Mat(可任意大小),也可以通过Scalar指定纯色的背景*/
void image_fusion(cv::Mat &imgBGR, cv::Mat matte, cv::Mat &out, cv::Mat bg) {assert(matte.channels() == 1);out.create(imgBGR.size(), CV_8UC3);vector<float> ratio{(float) imgBGR.cols / bg.cols, (float) imgBGR.rows / bg.rows};float max_ratio = *max_element(ratio.begin(), ratio.end());if (max_ratio > 1.0) {cv::resize(bg, bg, cv::Size(int(bg.cols * max_ratio), int(bg.rows * max_ratio)));}bg = image_center_crop(bg, imgBGR.cols, imgBGR.rows);int n = imgBGR.channels();int h = imgBGR.rows;int w = imgBGR.cols * n;// 循环体外进行乘法和除法运算matte.convertTo(matte, CV_32FC1, 1.0 / 255, 0);for (int i = 0; i < h; ++i) {uchar *sptr = imgBGR.ptr<uchar>(i);uchar *dptr = out.ptr<uchar>(i);float *mptr = matte.ptr<float>(i);uchar *bptr = bg.ptr<uchar>(i);for (int j = 0; j < w; j += n) {//float alpha = mptr[j] / 255; //循环体尽量减少乘法和除法运算float alpha = mptr[j / 3];float _alpha = 1.f - alpha;dptr[j] = uchar(sptr[j] * alpha + bptr[j] * _alpha);dptr[j + 1] = uchar(sptr[j + 1] * alpha + bptr[j + 1] * _alpha);dptr[j + 2] = uchar(sptr[j + 2] * alpha + bptr[j + 2] * _alpha);}}
}

 (3) MODNet模型

本文主要在MODNet人像抠图算法基础上进行模型压缩和优化,关于《MODNet: Trimap-Free Portrait Matting in Real Time》,请参考:

  • Paper: https://arxiv.org/pdf/2011.11961.pdf
  • 官方Github: GitHub - ZHKKKe/MODNet: A Trimap-Free Solution for Portrait Matting in Real Time 

 MODNet模型学习分为三个部分,分别为:语义部分(S),细节部分(D)和融合部分(F)

  • 在语义估计中,对high-level的特征结果进行监督学习,标签使用的是下采样及高斯模糊后的GT,损失函数用的L2-Loss,用L2loss应该可以学到更soft的语义特征;
  • 在细节预测中,结合了输入图像的信息和语义部分的输出特征,通过encoder-decoder对人像边缘进行单独地约束学习,用的是交叉熵损失函数。为了减小计算量,encoder-decoder结构较为shallow,同时处理的是原图下采样后的尺度。
  • 在融合部分,把语义输出和细节输出结果拼起来后得到最终的alpha结果,这部分约束用的是L1损失函数。

官方GitHub仅仅放出推理代码,并未提供训练代码和数据处理代码 ;鄙人参考原论文花了几个星期的时间,总算复现了其基本效果,并做了一些轻量化和优化的工作,主要有:

  • 复现Pytorch版本的MODNet训练过程和数据处理
  • 增加了数据增强方法:如多尺度随机裁剪,Mosaic(拼图),随机背景融合等方法,提高模型泛化性
  • 对MODNet骨干网络backbone进行轻量化,减少计算量
  • 模型压缩,目前提供三个版本:高精度人像抠图modnet+快速人像抠图modnet0.75+超快人像抠图modnet0.5
  • 转写模型推理过程,实现C++版本人像抠图算法
  • 实现Android版本人像抠图算法,支持CPU和GPU
  • 提供高精度版本人像抠图,可以达到精细到发丝级别的抠图效果(Android GPU 150ms,  CPU 500ms左右)
  • 提供轻量化快速版人像抠图,满足基本的人像抠图效果,可以在Android达到实时的抠图效果(Android GPU 60ms,  CPU 140ms左右)

高精度人像抠图modnet+快速人像抠图modnet0.75+超快人像抠图modnet0.5的模型参数量和计算量:

模型input sizeFLOPs and Params
modnet416×416Model FLOPs 10210.24M, Params 6.44M
modnet0.75320×320Model FLOPs 3486.23M, Params 3.64M
modnet0.5320×320Model FLOPs 1559.07M, Params 1.63M

最近发现,百度PaddleSeg团队也复现了MODNet算法(基于PaddlePaddle框架,非Pytorch版本),提供了更丰富的backbone模型选择,如MobileNetV2,ResNet50,HRNet_W18,可适用边缘端、服务端等多种任务场景,有兴趣的可以看看:

 PaddlePaddle版本:https://github.com/PaddlePaddle/PaddleSeg/tree/release/2.3/contrib/Matting


5. Demo测试效果 

项目环境配置好后,运动demo.py即可测试抠图效果,方法

  • 测试图片
# 测试图片
python demo.py --model_type "modnet" --model_file "work_space/modnet_416/model/best_model.pth" --image_dir "data/test_images"
  • 测试视频文件
# 测试视频文件
python demo.py --model_type "modnet" --model_file "work_space/modnet_416/model/best_model.pth" --video_file "data/video/video-test1.mp4"
  • 测试摄像头
# 测试摄像头
python demo.py --model_type "modnet" --model_file "work_space/modnet_416/model/best_model.pth" --video_file 0

下图GIF是Python版本的视频抠图效果

实际使用中,建议你:

  • 背景越单一,抠图的效果越好,背景越复杂,抠图效果越差;建议你实际使用中,找一比较单一的背景,如墙面,天空等
  • 上半身抠图的效果越好,下半身或者全身抠图效果较差;本质上这是数据的问题,因为训练数据70%都是只有上半身的
  • 白种人抠图的效果越好,黑人和黄种人抠图效果较差;这也是数据的问题,因为训练数据大部分都是隔壁的老外

下图是高精度版本人像抠图和快速人像抠图的测试效果,相对而言,高精度版本人像抠图可以精细到发丝级别的抠图效果;而快速人像构图目前仅能实现基本的抠图效果

高精度版本人像抠图快速人像抠图

6. 源码下载(Python)

项目源码下载地址:Python实现人像抠图 (Portrait Matting)

项目源码内容包含:

  • 提供Python的推理代码(不含训练代码和不含数据集)
  • 提供高精度版本人像抠图模型(modnet_416),可以达到精细到发丝级别的抠图效果
  • 提供轻量化快速版人像抠图模型(modnet0.75_320和modnet0.5_320),满足基本的人像抠图效果,
  • Demo支持图片抠图,视频抠图,摄像头抠图

7.人像抠图C++版本

一键抠图2:C/C++实现人像抠图 (Portrait Matting)https://blog.csdn.net/guyuealian/article/details/134790532


8.人像抠图Android版本

一键抠图3:Android实现人像抠图 (Portrait Matting)https://blog.csdn.net/guyuealian/article/details/134801795

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/200664.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

初级数据结构(一)——顺序表

文中代码源文件已上传&#xff1a;数据结构源码 1、顺序表的特点 1.1、数组 现实中数据记录一般都记录在表格中&#xff0c;如进货单、菜单等&#xff0c;它们的最大特点就是有序。表述中可以用第一项、第二项、第 n 项来描述表格中某个数据或者某串数据。在 C 语言中&#…

开启三层交换机DHCP服务

二层交换机上不需要配置任何东西&#xff0c;只需要在pc机上开启dhcp服务&#xff0c;配置好LSW1后就可以自动获取到IP地址。 sys Enter system view, return user view with CtrlZ. [Huawei]sys sw1 [sw1]dhcp enable Info: The operation may take a few seconds. Please wai…

BUU UPLOAD COURSE 1

传一个cmd.php木马文件 访问一下这个图片地址 发现什么都没有&#xff0c;在hackbar里面连接一下我们的木马 然后看到了一些目录 然后直接查看flag就出来了 这里也可以用蚁剑去连接 直接访问地址&#xff0c;拿着地址去连接就行了。

大数据:sql,数据挖掘刷题

大数据&#xff1a;sql 2022找工作是学历、能力和运气的超强结合体&#xff0c;遇到寒冬&#xff0c;大厂不招人&#xff0c;可能很多算法学生都得去找开发&#xff0c;测开 测开的话&#xff0c;你就得学数据库&#xff0c;sql&#xff0c;oracle&#xff0c;尤其sql要学&…

22款奔驰C260L升级小柏林音响 无损音质效果

奔驰新款C级号称奔驰轿车的小“S”&#xff0c;在配置方面上肯定也不能低的&#xff0c;提了一台低配的车型&#xff0c;通过后期升级加装件配置提升更高档次&#xff0c;打造独一无二的奔驰C级&#xff0c;此次来安排一套小柏林之声音响&#xff0c;效果怎么样&#xff0c;我们…

剪刀石头布游戏

csdn问答社区的一道题目&#xff0c;题目描述都像一篇论文了&#xff0c;界面设置不敢恭维&#xff0c;不过也算是可练手工程。 (笔记模板由python脚本于2023年12月05日 22:15:03创建&#xff0c;本篇笔记适合熟悉Python字典、列表、字符串的coder翻阅) 【学习的细节是欢悦的历…

[JavaScript前端开发及实例教程]计算器井字棋游戏的实现

计算器&#xff08;网页内实现效果&#xff09; HTML部分 <html lang"en"> <head><meta charset"UTF-8"><meta name"viewport" content"widthdevice-width, initial-scale1.0"><title>My Calculator&l…

微信小程序基础

1.小程序发展史 微信小程序之前&#xff0c;是使用weixin-sdk进行开发&#xff0c;调用视频&#xff0c;摄像头等。 微信小程序weixin up端&#xff0c;所以PC端的window这些没有&#xff0c;运行环境是IOS&#xff0c;安卓等&#xff0c;有一些特殊的调用录音功能&#xff0…

JavaScript 安全的《加/解密处理》的实战--案例(二)

前言: 在Web开发中&#xff0c;安全性一直是一个重要而复杂的议题&#xff0c;尤其是与敏感数据操作有关时。数据传输地过程中需要保证信息绝对的安全性&#xff0c;包括了诸如用户名、密码、个人信息等&#xff0c;这就需要对这类信息进行加密与解密。本案例&#xff08;二&a…

在AWS Lambda中使用FFmpeg处理m3u8视频流

大纲 1 部署有FFmpeg功能的Lambda环境1.1 部署层1.2 部署代码1.2.1 FFmpeg指令1.2.2 代码 2 配置Lambda角色权限2.1 选择角色类型2.2 设置权限2.3 保存角色2.4 绑定角色 参考文献 在直播里领域&#xff0c;我们经常需要对视频流进行处理。FFmpeg则是该领域中处理的利器。这篇文…

根文件系统的开机自启动测试

一. 简介 本文在之前制作的根文件系统可以正常运行的基础上进行的&#xff0c;继上一篇文章地址如下&#xff1a; 完善根文件系统-CSDN博客 在前面测试软件hello 运行时&#xff0c;都是等 Linux 启动进入根文件系统以后手动输入 “./hello” 命令 来完成的。 我们一般做好产…

Python计算方差

方差可以反应变量的离散程度&#xff0c;是因为它度量了数据点与均值的差异。方差是每个数据点与均值的差的平方和的平均值&#xff0c;它可以反映数据点在均值附近的分布情况。如果方差较小&#xff0c;说明数据点更加集中在均值附近&#xff0c;离散程度较小&#xff1b;如果…

uniapp微信小程序分包,小程序分包

前言&#xff0c;都知道我是一个后端开发、所以今天来写一下uniapp。 起因是美工给我的切图太大&#xff0c;微信小程序不让了&#xff0c;在网上找了一大堆分包的文章&#xff0c;我心思我照着写的啊&#xff0c;怎么就一直报错呢&#xff1f; 错误原因 tabBar的页面被我放在分…

【从零开始学习JVM | 第一篇】快速了解JVM

前言&#xff1a; 在探索现代软件开发的丰富生态系统时&#xff0c;我们不可避免地会遇到一个强大而神秘的存在——Java虚拟机&#xff08;JVM&#xff09;。作为Java语言最核心的组成之一&#xff0c;JVM已经超越了其最初的设计目标&#xff0c;成为一个多语言的运行平台&…

WPS Office JS宏实现批量处理Word中的标题和正文的样式

该篇讲解下word文档中的标题和正文批量修改样式&#xff0c;如下图&#xff1a; 前面一篇已讲解了WPS Office宏编辑器操作方法&#xff0c;这里不细讲了&#xff0c;如有不清楚可以查看该篇&#xff1a;https://blog.csdn.net/jiciqiang/article/details/134653657?spm1001.20…

Install4J安装界面中如何使用脚本找到依赖程序XShell的安装位置

前言 写了一个工具, 使用Install4j打包, 但因为需要用到XShell, 所以希望在安装界面能够提前让用户配置好XShell的安装位置, 所以对Install4j的安装界面需要自定义, 后期在程序中直接过去安装位置就可以正常使用. 调研 和git-bash不一样, 安装版的XShell没有在注册表里存储安…

Ubuntu系统下使用apt-get安装Redis

记录一下Ubuntu20.04 64位系统下使用apt-get安装Redis 首先检查一下系统是否安装过redis whereis redismywmyw-K84HR:~$ whereis redis redis: mywmyw-K84HR:~$ 更新软件包 sudo apt-get update -y安装redis sudo apt-get install redis-server -ymywmyw-K84HR:~$ sudo apt…

Java常见CodeReview及编码规范

鉴于自己的开发经验,以及常见容易产生bug及性能问题的点做个记录. 1.数据库 如果开发人员的经验不足,Java通过ORM(Mybatis)对数据库的操作的性能问题比较隐蔽.因为不压测或者异常case没发生的时候一般发现不了问题.特别是异常case发生的时候. 除配置表以外的sql都要经过expl…

Learning Memory-guided Normality for Anomaly Detection 论文阅读

Learning Memory-guided Normality for Anomaly Detection 摘要1.介绍2.相关工作3.方法3.1网络架构3.1.1 Encoder and decoder3.1.2 Memory 3.2. Training loss3.3. Abnormality score 4.实验5.总结总结&代码复现&#xff1a; 文章信息&#xff1a; 发表于&#xff1a;cvpr…

消息中间件之间的区别

一.单机吞吐量 ActiveMQ&#xff1a;万级&#xff0c;吞吐量比RocketMQ和Kafka要低了一个数量级 RabbitMQ&#xff1a;万级&#xff0c;吞吐量比RocketMQ和Kafka要低了一个数量级 RocketMQ&#xff1a;10万级&#xff0c;RocketMQ也是可以支撑高吞吐的一种MQ Kafka&#xff…