时间复杂度为O (nlogn)的排序算法

归并排序

归并排序遵循分治的思想:将原问题分解为几个规模较小但类似于原问题的子问题,递归地求解这些子问题,然后合并这些子问题的解来建立原问题的解,归并排序的步骤如下:

  • 划分:分解待排序的 n 个元素的序列成各具 n/2 个元素的两个子序列,将长数组的排序问题转换为短数组的排序问题,当待排序的序列长度为 1 时,递归划分结束

  • 合并:合并两个已排序的子序列得出已排序的最终结果

归并排序的代码实现如下:

    private void sort(int[] nums, int left, int right) {if (left >= right) {return;}// 划分int mid = left + right >> 1;sort(nums, left, mid);sort(nums, mid + 1, right);// 合并merge(nums, left, mid, right);}private void merge(int[] nums, int left, int mid, int right) {// 辅助数组int[] temp = Arrays.copyOfRange(nums, left, right + 1);int leftBegin = 0, leftEnd = mid - left;int rightBegin = leftEnd + 1, rightEnd = right - left;for (int i = left; i <= right; i++) {if (leftBegin > leftEnd) {nums[i] = temp[rightBegin++];} else if (rightBegin > rightEnd || temp[leftBegin] < temp[rightBegin]) {nums[i] = temp[leftBegin++];} else {nums[i] = temp[rightBegin++];}}}

归并排序最吸引人的性质是它能保证将长度为 n 的数组排序所需的时间和 nlogn 成正比;它的主要缺点是所需的额外空间和 n 成正比。

算法特性:

  • 空间复杂度:借助辅助数组实现合并,使用 O (n) 的额外空间;递归深度为 logn,使用 O (logn) 大小的栈帧空间。忽略低阶部分,所以空间复杂度为 O (n)

  • 非原地排序

  • 稳定排序

  • 非自适应排序

以上代码是归并排序常见的实现,下面我们来一起看看归并排序的优化策略:

将多次创建小数组的开销转换为只创建一次大数组

在上文实现中,我们在每次合并两个有序数组时,即使是很小的数组,我们都会创建一个新的 temp [] 数组,这部分耗时是归并排序运行时间的主要部分。更好的解决方案是将 temp [] 数组定义成 sort () 方法的局部变量,并将它作为参数传递给 merge () 方法,实现如下:

    private void sort(int[] nums, int left, int right, int[] temp) {if (left >= right) {return;}// 划分int mid = left + right >> 1;sort(nums, left, mid, temp);sort(nums, mid + 1, right, temp);// 合并merge(nums, left, mid, right, temp);}private void merge(int[] nums, int left, int mid, int right, int[] temp) {System.arraycopy(nums, left, temp, left, right - left + 1);int l = left, r = mid + 1;for (int i = left; i <= right; i++) {if (l > mid) {nums[i] = temp[r++];} else if (r > right || temp[l] < temp[r]) {nums[i] = temp[l++];} else {nums[i] = temp[r++];}}}

当数组有序时,跳过 merge () 方法

我们可以在执行合并前添加判断条件:如果 nums[mid] <= nums[mid + 1] 时我们认为数组已经是有序的了,那么我们就跳过 merge () 方法。它不影响排序的递归调用,但是对任意有序的子数组算法的运行时间就变成线性的了,代码实现如下:

    private void sort(int[] nums, int left, int right, int[] temp) {if (left >= right) {return;}// 划分int mid = left + right >> 1;sort(nums, left, mid, temp);sort(nums, mid + 1, right, temp);// 合并if (nums[mid] > nums[mid + 1]) {merge(nums, left, mid, right, temp);}}private void merge(int[] nums, int left, int mid, int right, int[] temp) {System.arraycopy(nums, left, temp, left, right - left + 1);int l = left, r = mid + 1;for (int i = left; i <= right; i++) {if (l > mid) {nums[i] = temp[r++];} else if (r > right || temp[l] < temp[r]) {nums[i] = temp[l++];} else {nums[i] = temp[r++];}}}

对小规模子数组使用插入排序

对小规模数组进行排序会使递归调用过于频繁,而使用插入排序处理小规模子数组一般可以将归并排序的运行时间缩短 10% ~ 15%,代码实现如下:

    /*** M 取值在 5 ~ 15 之间大多数情况下都能令人满意*/private final int M = 9;private void sort(int[] nums, int left, int right) {if (left + M >= right) {// 插入排序insertSort(nums);return;}// 划分int mid = left + right >> 1;sort(nums, left, mid);sort(nums, mid + 1, right);// 合并merge(nums, left, mid, right);}/*** 插入排序*/private void insertSort(int[] nums) {for (int i = 1; i < nums.length; i++) {int base = nums[i];int j = i - 1;while (j >= 0 && nums[j] > base) {nums[j + 1] = nums[j--];}nums[j + 1] = base;}}private void merge(int[] nums, int left, int mid, int right) {// 辅助数组int[] temp = Arrays.copyOfRange(nums, left, right + 1);int leftBegin = 0, leftEnd = mid - left;int rightBegin = leftEnd + 1, rightEnd = right - left;for (int i = left; i <= right; i++) {if (leftBegin > leftEnd) {nums[i] = temp[rightBegin++];} else if (rightBegin > rightEnd || temp[leftBegin] < temp[rightBegin]) {nums[i] = temp[leftBegin++];} else {nums[i] = temp[rightBegin++];}}}

快速排序

快速排序也遵循分治的思想,它与归并排序不同的是,快速排序是原地排序,而且快速排序会先排序当前数组,再对子数组进行排序,它的算法步骤如下:

  • 哨兵划分:选取数组中最左端元素为基准数,将小于基准数的元素放在基准数左边,将大于基准数的元素放在基准数右边

  • 排序子数组:将哨兵划分的索引作为划分左右子数组的分界,分别对左右子数组进行哨兵划分和排序

快速排序的代码实现如下:

    private void sort(int[] nums, int left, int right) {if (left >= right) {return;}// 哨兵划分int partition = partition(nums, left, right);// 分别排序两个子数组sort(nums, left, partition - 1);sort(nums, partition + 1, right);}/*** 哨兵划分*/private int partition(int[] nums, int left, int right) {// 以 nums[left] 作为基准数,并记录基准数索引int originIndex = left;int base = nums[left];while (left < right) {// 从右向左找小于基准数的元素while (left < right && nums[right] >= base) {right--;}// 从左向右找大于基准数的元素while (left < right && nums[left] <= base) {left++;}swap(nums, left, right);}// 将基准数交换到两子数组的分界线swap(nums, originIndex, left);return left;}private void swap(int[] nums, int left, int right) {int temp = nums[left];nums[left] = nums[right];nums[right] = temp;}

算法特性:

  • 时间复杂度:平均时间复杂度为 O (nlogn),最差时间复杂度为 O (n2)

  • 空间复杂度:最差情况下,递归深度为 n,所以空间复杂度为 O (n)

  • 原地排序

  • 非稳定排序

  • 自适应排序

归并排序的时间复杂度一直是 O (nlogn),而快速排序在最坏的情况下时间复杂度为 O (n2),为什么归并排序没有快速排序应用广泛呢?

答:因为归并排序是非原地排序,在合并阶段需要借助非常量级的额外空间

快速排序有很多优点,但是在哨兵划分不平衡的情况下,算法的效率会比较低效。下面是对快速排序排序优化的一些方法:

切换到插入排序

对于小数组,快速排序比插入排序慢,快速排序的 sort () 方法在长度为 1 的子数组中也会调用一次,所以,在排序小数组时切换到插入排序排序的效率会更高,如下:

    /*** M 取值在 5 ~ 15 之间大多数情况下都能令人满意*/private final int M = 9;public void sort(int[] nums, int left, int right) {// 小数组采用插入排序if (left + M >= right) {insertSort(nums);return;}int partition = partition(nums, left, right);sort(nums, left, partition - 1);sort(nums, partition + 1, right);}/*** 插入排序*/private void insertSort(int[] nums) {for (int i = 1; i < nums.length; i++) {int base = nums[i];int j = i - 1;while (j >= 0 && nums[j] > base) {nums[j + 1] = nums[j--];}nums[j + 1] = base;}}private int partition(int[] nums, int left, int right) {int originIndex = left;int base = nums[left];while (left < right) {while (left < right && nums[right] >= base) {right--;}while (left < right && nums[left] <= base) {left++;}swap(nums, left, right);}swap(nums, left, originIndex);return left;}private void swap(int[] nums, int left, int right) {int temp = nums[left];nums[left] = nums[right];nums[right] = temp;}

基准数优化

如果数组为倒序的情况下,选择最左端元素为基准数,那么每次哨兵划分会导致右数组长度为 0,进而使快速排序的时间复杂度为 O (n2),为了尽可能避免这种情况,我们可以对基准数的选择进行优化,采用三取样切分的方法:选取数组最左端、中间和最右端这三个值的中位数为基准数,这样选择的基准数大概率不是区间的极值,时间复杂度为 O (n2) 的概率大大降低,代码实现如下:

    public void sort(int[] nums, int left, int right) {if (left >= right) {return;}// 基准数优化betterBase(nums, left, right);int partition = partition(nums, left, right);sort(nums, left, partition - 1);sort(nums, partition + 1, right);}/*** 基准数优化,将 left, mid, right 这几个值中的中位数换到 left 的位置* 注意其中使用了异或运算进行条件判断*/private void betterBase(int[] nums, int left, int right) {int mid = left + right >> 1;if ((nums[mid] < nums[right]) ^ (nums[mid] < nums[left])) {swap(nums, left, mid);} else if ((nums[right] < nums[left]) ^ (nums[right] < nums[mid])) {swap(nums, left, right);}}private int partition(int[] nums, int left, int right) {int originIndex = left;int base = nums[left];while (left < right) {while (left < right && nums[right] >= base) {right--;}while (left < right && nums[left] <= base) {left++;}swap(nums, left, right);}swap(nums, originIndex, left);return left;}private void swap(int[] nums, int left, int right) {int temp = nums[left];nums[left] = nums[right];nums[right] = temp;}

三向切分

在数组有大量重复元素的情况下,快速排序的递归性会使元素全部重复的子数组经常出现,而对这些数组进行快速排序是没有必要的,我们可以对它进行优化。

一个简单的想法是将数组切分为三部分,分别对应小于、等于和大于基准数的数组,每次将其中 “小于” 和 “大于” 的数组进行排序,那么最终也能得到排序的结果,这种策略下我们不会对等于基准数的子数组进行排序,提高了排序算法的效率,它的算法流程如下:

从左到右遍历数组,维护指针 l 使得 [left, l - 1] 中的元素都小于基准数,维护指针 r 使得 [r + 1, right] 中的元素都大于基准数,维护指针 mid 使得 [l, mid - 1] 中的元素都等于基准数,其中 [mid, r] 区间中的元素还未确定大小关系,图示如下:

图片

它的代码实现如下:

    public void sort(int[] nums, int left, int right) {if (left >= right) {return;}// 三向切分int l = left, mid = left + 1, r = right;int base = nums[l];while (mid <= r) {if (nums[mid] < base) {swap(nums, l++, mid++);} else if (nums[mid] > base) {swap(nums, mid, r--);} else {mid++;}}sort(nums, left, l - 1);sort(nums, r + 1, right);}private void swap(int[] nums, int left, int right) {int temp = nums[left];nums[left] = nums[right];nums[right] = temp;}

这也是经典的荷兰国旗问题,因为这就好像用三种可能的主键值将数组排序一样,这三种主键值对应着荷兰国旗上的三种颜色

巨人的肩膀

  • 《Hello 算法》:11.5 和 11.6 小节

  • 《算法 第四版》:2.3 节 快速排序

  • 《算法导论 第三版》:第 2.2、2.3、7 章

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/193955.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

【c】求一组数据的最大值和第二大的值

我们可以创建数组&#xff0c;利用冒泡排序法把数组进行排序&#xff0c;但是当元素过多时候循环可能过多导致循环超限 所以我们可以换种其他方法&#xff0c;代码附上 #include<stdio.h> int main() {int n,i;puts("输入这组数据的个数");scanf("%d&qu…

【无标题】parseq

一堆乱七八糟 conda create -n parseq python3.9 -y conda activate parseq # CUDA 11.3 conda install pytorch1.10.1 torchvision0.11.2 torchaudio0.10.1 cudatoolkit11.3 -c pytorch -c conda-forge# CUDA 10.2 pip install torch1.10.1cu102 torchvision0.11.2cu102 torc…

elment-ui部分ui组件在移动端也能实现自适应

javascript 好久没更新了 ,来更新一下自己的笔记 最近有移动端的项目迁移到pc端,pc端那一套用的是element-ui的后台框架,所以难免有一些样式不兼容的问题,之前很久的时候也处理过这些,但是很久没处理忘了,所以之后再遇到兼容的会更新到这篇笔记上,供之后翻阅 1. el-dialog 借…

MySQL库与表的备份

库的备份 备份 语法 mysqldump -P3306 -u root -p 密码 -B 数据库名 > 数据库备份存储的文件路径 例 mysqldump -P3306 -u root -p123456 -B mytest > D:/mytest.sql 注意 这是在linux命令行下。 还原 语法 scource 数据库文件路径 例 source D:/mysql-5.7.22/mytest.s…

进行主从复制时出现的异常FATAL CONFIG FILE ERROR (Redis 6.2.6)Reading the configuration file

错误如下所示&#xff1a; FATAL CONFIG FILE ERROR (Redis 6.2.6) Reading the configuration file, at line 1 >>> include/myredis/redis.conf Bad directive or wrong number of arguments出现错误的原因是.conf文件中命令之间缺少空格&#xff0c;如下所示&…

QML中常见布局方法

目录 引言常见方法锚定&#xff08;anchors&#xff09;定位器Row、ColumnGridFlow 布局管理器RowLayout、ColumnLayoutGridLayoutStackLayout 总结 引言 UI界面由诸多元素构成&#xff0c;如Label、Button、Input等等&#xff0c;各种元素需要按照一定规律进行排布才能提高界…

Prime 2.0

信息收集 # Nmap 7.94 scan initiated Thu Nov 23 20:09:06 2023 as: nmap -sn -oN live.nmap 192.168.182.0/24 Nmap scan report for 192.168.182.1 Host is up (0.00018s latency). MAC Address: 00:50:56:C0:00:08 (VMware) Nmap scan report for 192.168.182.2 Host is u…

长度最小的子数组(Java详解)

目录 题目描述 题解 思路分析 暴力枚举代码 滑动窗口代码 题目描述 给定一个含有 n 个正整数的数组和一个正整数 target 。 找出该数组中满足其和 ≥ target 的长度最小的 连续子数组 [numsl, numsl1, ..., numsr-1, numsr] &#xff0c;并返回其长度。如果不存在符合条…

OpenCvSharp从入门到实践-(06)创建图像

目录 1、创建图像 1.1实例1-创建黑色图像 1.2实例2-创建白色图像 1.3实例3-创建随机像素的雪花点图像 2、图像拼接 2.1水平拼接图像 2.2垂直拼接图像 2.3实例4-垂直和水平两种方式拼接两张图像 在OpenCV中&#xff0c;黑白图像其实就是一个二维数组&#xff0c;彩色图像…

[ Linux Audio 篇 ] 音频开发入门基础知识

在短视频兴起的背景下&#xff0c;音视频开发越来越受到重视。接下来将为大家介绍音频开发者入门知识&#xff0c;帮助读者快速了解这个领域。 轻柔的音乐、程序员有节奏感的键盘声、嗡嗡的发动机、刺耳的手提钻……这些声音是如何产生的呢&#xff1f;又是如何传到我们耳中的…

SpringSecurity和JWT实现认证和授权

SpringSecurity和JWT实现认证和授权 框架介绍SpringSecurityJWT组成实例JWT实现认证和授权的原理 Hutool 使用表整合SpringSecurity及JWT在pom.xml中添加依赖添加JWT token的工具类添加RbacAdminService&#xff1a;添加自定义mapper创建SpringSecurity配置类添加ProjectSecuri…

Redis--14--BigKey 和 热点Key

提示&#xff1a;文章写完后&#xff0c;目录可以自动生成&#xff0c;如何生成可参考右边的帮助文档 文章目录 BigKey1.什么是bigkey2.bigkey的危害3.发现bigkeyscan 4.解决bigkey 什么是热点Key&#xff1f;该如何解决1. 产生原因和危害原因危害 2.发现热点key预估发现客户端…

使用RTOS时需要注意的几点内容

对许多嵌入式项目来说&#xff0c;系统设计师都倾向于选择实时操作系统(RTOS)。但RTOS总是必要的吗? 答案是取决于具体的应用&#xff0c;因此了解我们要达到什么目标是决定RTOS是必要的还是花瓶的关键。 一般来说&#xff0c;在采用非实时操作系统(non-RTOS)的任何场合&…

praseInt 和 逻辑或连用

这是做项目时遇到json文件转换 的一个小坑 将json 对象中的值 由字符串(数字字符串) 转换为 数值类型&#xff0c;如果是 转换失败 &#xff0c;就返回 -1 这里的 parseInt 看起来非常简洁&#xff0c;但是存在一个小坑 transformedData[fieldsToCheck[i]] parseInt(origina…

Stable Diffusion AI绘画系列【11】:超萌的Q版手办萌宠系列

《博主简介》 小伙伴们好&#xff0c;我是阿旭。专注于人工智能、AIGC、python、计算机视觉相关分享研究。 ✌更多学习资源&#xff0c;可关注公-仲-hao:【阿旭算法与机器学习】&#xff0c;共同学习交流~ &#x1f44d;感谢小伙伴们点赞、关注&#xff01; 《------往期经典推…

C语言memcpy,memmove的介绍及模拟实现

文章目录 每日一言memcpy介绍模拟实现 memmove介绍模拟实现思路代码 结语 每日一言 If you want to lift yourself up, lift up someone else. 如果你想振奋自己&#xff0c; 先振奋周遭的人。 memcpy 介绍 函数原型&#xff1a; void *memcpy(void *dest, const void *sr…

送女朋友一个猜数字小游戏,猜对了会显示爱心(给你心爱的他或她一个惊喜)

起因是我在学习C语言完成老师布置C语言写一个猜数字的作业&#xff0c;突发奇想&#xff0c;能不能在这个猜对了之后弹出一个不一样的页面&#xff0c;然后就试试看能不能实现。基本思路是这样的&#xff1a; 1&#xff1a;先写一个C语言的猜数字的小游戏&#xff0c;在我上个文…

StackGres 1.6 数据库平台工程功能介绍以及快速上手

StackGres 1.6 数据库平台工程功能 声明式 K8S CRs StackGres operator 完全由 Kubernetes 自定义资源管理。除了 kubectl 或任何其他 Kubernetes API 访问之外&#xff0c;不需要安装任何客户端或其他工具来管理 StackGres。您的请求由 CRD 的 spec 部分表示&#xff0c;任何 …

Redis 数据结构详解

分类 编程技术 Redis 数据类型分为&#xff1a;字符串类型、散列类型、列表类型、集合类型、有序集合类型。 Redis 这么火&#xff0c;它运行有多块&#xff1f;一台普通的笔记本电脑&#xff0c;可以在1秒钟内完成十万次的读写操作。 原子操作&#xff1a;最小的操作单位&a…

无懈可击的身份验证:深入了解JWT的工作原理

&#x1f38f;&#xff1a;你只管努力&#xff0c;剩下的交给时间 &#x1f3e0; &#xff1a;小破站 无懈可击的身份验证&#xff1a;深入了解JWT的工作原理 前言JWT的基础概念基本概念JWT的工作流程注意事项 JWT的工作原理生成令牌传输令牌验证令牌 JWT的安全性考量1. 使用强…