yolov5 7.0版本部署手机端。通过pnnx导出ncnn。

yolov5 7.0版本部署手机端。通过pnnx导出ncnn。

  • 流程
  • 配置ncnn android yolov5
  • 导出自己模型的ncnn
    • 修改yolo.py文件
    • 导出TorchScript文件
    • pnnx转torchscript为ncnn
  • 安卓运行
      • 权重路径
      • 输入输出
      • anchors 大小
      • 类别名
      • generate_proposals方法修改
    • 结果

流程

网络yolov5 的部署已经有很多了,但是他们很多都是老版本,2023.12.03最新的版本是7.0。导致现在部署碰到各种问题。如下:

  1. (根源) yolov5 export.py导出onnx时添加train参数。但是train参数在最新的7.0版本已经被去掉了。导致问题。
  2. 没有train参数后,使用export.py 导出onnx,再将onnx转ncnn时报错。修改onnx模型麻烦且容易出问题。

本文使用pnnx代码库https://github.com/pnnx/pnnx将torchscript转为ncnn.避免上述问题。流程如下:
在这里插入图片描述

配置ncnn android yolov5

代码库:https://github.com/nihui/ncnn-android-yolov5。先使用代码库中提供的yolov5s ncnn权重。手机端能正常运行并产生输出。
在这里插入图片描述

导出自己模型的ncnn

修改yolo.py文件

老版本的export.py 中,通过添加train参数,去除模型中的后处理。但是新版本中,这个参数没了,所以我们需要将模型中的后处理去掉。
找到yolov5代码中的models->yolo.py文件,将Detect类下面的forward函数替换(大概是56-80行),修改为下面的forward

    def forward(self, x):z = []  # inference outputfor i in range(self.nl):feat = self.m[i](x[i])  # conv# x(bs,255,20,20) -> x(bs,20,20,255)feat = feat.permute(0, 2, 3, 1).contiguous()z.append(feat.sigmoid())return tuple(z)

导出TorchScript文件

直接导出即可

python export.py --weights yolov5s.pt  --include torchscript

pnnx转torchscript为ncnn

代码库:https://github.com/pnnx/pnnx.直接使用releases中的可执行文件即可。使用下面的命令转。需要注意的是zsh不支持官网的[]命令,需要用""包裹

'./pnnx'  'yolov5s.torchscript'    "inputshape=[1,3,640,640]"

正常情况下,在yolov5s.torchscript的文件中已经产生了yolov5s.ncnn.bin 和yolov5s.ncnn.param。这就是我们要的ncnn文件。

安卓运行

将上面的yolov5s.ncnn.bin 和yolov5s.ncnn.param都放入ncnn-android项目文件夹。路径是ncnn-android-yolov5/app/src/main/assets/,这里面应该有一个yolov5s.bin和yolov5s.param。我们将我们转的模型也放进去。如下图。
在这里插入图片描述

然后我们修改yolov5ncnn_jni.cpp文件(上图中的绿色框)。修改模型权重路径,输入输出、anchors大小和类别名。

权重路径

全局搜索yolov5.load_param,将后面的yolov5s.param修改为自己的param名。就在这个代码附近有bin的加载.同理修改

输入输出

打开https://netron.app/,然后将param拖进去, 最上面的这个名字是in0,将in0填写到ex.input中。 模型有三个输出,分别对应stride 8,stride 16和stride 32.将这个输出的名字也填写到对应位置。一般情况下,stride 8对应out0,stride 16对应out1,stride 32对应out2.

最上面的模型输出,以及对应的名字最上面的模型输出,以及对应的名字
下面是应该填写的位置。红色是input,绿色是output.
在这里插入图片描述
模型的第一个头。同理可找另外两个头。
在这里插入图片描述

anchors 大小

anchors的大小就在ex.extract的下方。一共有3个地方需要填写,对应stride 8(小物体),stride 16和stride 32(大物体)。如果自己的网络anchors大小没变则不用改。下图是stride 8 的修改。
在这里插入图片描述

类别名

类别名。全局搜索static const char* class_names。改成自己的就好了。
在这里插入图片描述

generate_proposals方法修改

把整个generate_proposals方法的代码用下面的代码替换。大概在yolov5ncnn_jni.cpp文件的185行。


static void generate_proposals(const ncnn::Mat& anchors, int stride, const ncnn::Mat& in_pad, const ncnn::Mat& feat_blob, float prob_threshold, std::vector<Object>& objects)
{const int num_w = feat_blob.w;const int num_grid_y = feat_blob.c;const int num_grid_x = feat_blob.h;const int num_anchors = anchors.w / 2;const int walk = num_w / num_anchors;const int num_class = walk - 5;for (int i = 0; i < num_grid_y; i++){for (int j = 0; j < num_grid_x; j++){const float* matat = feat_blob.channel(i).row(j);for (int k = 0; k < num_anchors; k++){const float anchor_w = anchors[k * 2];const float anchor_h = anchors[k * 2 + 1];const float* ptr = matat + k * walk;float box_confidence = ptr[4];if (box_confidence >= prob_threshold){// find class index with max class scoreint class_index = 0;float class_score = -FLT_MAX;for (int c = 0; c < num_class; c++){float score = ptr[5 + c];if (score > class_score){class_index = c;class_score = score;}float confidence = box_confidence * class_score;if (confidence >= prob_threshold){float dx = ptr[0];float dy = ptr[1];float dw = ptr[2];float dh = ptr[3];float pb_cx = (dx * 2.f - 0.5f + j) * stride;float pb_cy = (dy * 2.f - 0.5f + i) * stride;float pb_w = powf(dw * 2.f, 2) * anchor_w;float pb_h = powf(dh * 2.f, 2) * anchor_h;float x0 = pb_cx - pb_w * 0.5f;float y0 = pb_cy - pb_h * 0.5f;float x1 = pb_cx + pb_w * 0.5f;float y1 = pb_cy + pb_h * 0.5f;Object obj;obj.x = x0;obj.y = y0;obj.w = x1 - x0;obj.h = y1 - y0;obj.label = class_index;obj.prob = confidence;objects.push_back(obj);}}}}}}
}

结果

点击运行。
在这里插入图片描述

参考:https://zhuanlan.zhihu.com/p/606440867

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/193679.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

最新最全的Postman接口测试: postman实现参数化

什么时候会用到参数化 比如&#xff1a;一个模块要用多组不同数据进行测试 验证业务的正确性 Login模块&#xff1a;正确的用户名&#xff0c;密码 成功&#xff1b;错误的用户名&#xff0c;正确的密码 失败 postman实现参数化 在实际的接口测试中&#xff0c;部分参数…

Redis Cluster

概念 Redis Cluster采用多主多从的方式&#xff0c;支持开启多个主节点&#xff0c;每个主节点可以挂载多个从节点。 Cluster会将数据进行分片&#xff0c;将数据分散到多个主节点上&#xff0c;而每个主节点都可以对外提供读写服务。这种做法使得Redis突破了单机内存大小的限制…

2023第二届全国大学生数据分析大赛AB题代码

看大家需求量比较大&#xff0c;所以更新了一下A、B题的示例代码&#xff0c;部分截图如下 A题部分截图 B题部分截图 免费获取代码 关注威信公众号 Python风控模型与数据分析&#xff0c;回复 23年数据分析大赛代码 文末查看如何免费获取代码&#xff1b;编写不易&#xff0c;…

低效的DOM操作(js的问题)

使用 JavaScript 操作DOM&#xff08;即添加、修改和删除元素&#xff09;是相对容易&#xff0c;但操作效率却不怎么样。 比如&#xff0c;每次添加一系列DOM元素。添加一个DOM元素是一个昂贵的操作。连续添加多个DOM元素的代码是低效的。 当需要添加多个DOM元素时&#xff…

【数据结构】AOV网与拓扑排序

一.AOV网的概念&#xff08;Activity On Vertex Network&#xff09; 在一个表示工程的有向图中&#xff0c;用顶点表示活动&#xff0c;用弧表示活动之间的优先关系。这样的有向图为顶点表示活动的网&#xff0c;我们称为AOV网&#xff08;Activity On Vertex Network&#xf…

scikit-learn线性回归法进行利润预测

大家好&#xff0c;生成式人工智能无疑是一个改变游戏规则的技术&#xff0c;但对于大多数商业问题来说&#xff0c;回归和分类等传统的机器学习模型仍然是首选。 私募股权或风险投资这样的投资者利用机器学习&#xff0c;首先必须了解关注的数据以及它是如何被使用的。投资公…

anaconda 笔记:安装anaconda之后显示conda command not found

解决方法是在.bashrc文件中添加如下一行文字&#xff08;如果没有.bashrc文件&#xff0c;就在root中新建一个这个文件&#xff09; export PATH$PATH:/home/Your_name/anaconda3/bin也就是安装anaconda3的路径 然后退出编辑&#xff0c;在命令行中敲入 source ~/.bashrc即可…

云原生Kubernetes系列 | init container初始化容器的作用

云原生Kubernetes系列 | init container初始化容器的作用 kubernetes 1.3版本引入了init container初始化容器特性。主要用于在启动应用容器(app container)前来启动一个或多个初始化容器,作为应用容器的一个基础。只有init container运行正常后,app container才会正常运行…

Spring——IOC,DI,AOP

Spring框架是一个轻量级的Java开发框架&#xff0c;它提供了许多功能强大的特性来简化Java应用程序的开发。其中&#xff0c;IOC&#xff08;控制反转&#xff09;、DI&#xff08;依赖注入&#xff09;和AOP&#xff08;面向切面编程&#xff09;是Spring框架的三大核心特性。…

k8s安装学习环境

目录 环境准备 配置hosts 关闭防火墙 关闭交换分区 调整swappiness参数 关闭setlinux Ipv4转发 时钟同步 安装Docker 配置Yum源 安装 配置 启动 日志 安装k8s 配置Yum源 Master节点 安装 初始化 配置kubectl 部署CNI网络插件 Node节点 检查 环境准备 准…

同步代码,异步代码-微任务 宏任务 事件循环(输出题)

1.知识点 事件循环&#xff1a; 由浏览器Web API管理的异步代码&#xff0c;如果有结果后&#xff0c;会根据这个异步代码的类型&#xff0c;被放入对应的微任务或宏任务当中。当执行栈的任务&#xff08;同步代码&#xff09;全部执行完毕后&#xff0c;再执行完所有微任务的…

springboot(ssm 二手图书交易系统 图书销售系统Java(codeLW)

springboot(ssm 二手图书交易系统 图书销售系统Java(code&LW) 开发语言&#xff1a;Java 框架&#xff1a;ssm/springboot vue JDK版本&#xff1a;JDK1.8&#xff08;或11&#xff09; 服务器&#xff1a;tomcat 数据库&#xff1a;mysql 5.7&#xff08;或8.0&#…

Google Guava 缓存工具使用详解

文章目录 缓存工具Cache接口LoadingCache接口CacheBuilder类CacheLoader类CacheStats类RemovalListener类 缓存工具 Guava提供了Cache接口和相关的类来支持缓存功能&#xff0c;它提供了高性能、线程安全的内存缓存&#xff0c;可以用于优化应用程序的性能。 特点&#xff1a…

Flutter 控件查阅清单

为了方便记录和使用Flutter中的各种控件&#xff0c;特写此博客以记之&#xff0c;好记性不如烂笔头嘛&#xff1a;&#xff09; 通过控件的首字母进行查找&#xff0c;本文会持续更新 控件目录 AAppBar BCContainerColumn &#xff08;列&#xff09; DDivider (分割线) EElev…

oj赛氪练习题,

区间内的真素数 import java.util.ArrayList; import java.util.Scanner;public class Main {public static void main(String[] args) {Scanner scanner new Scanner(System.in);int M scanner.nextInt();int N scanner.nextInt();scanner.close();ArrayList<Integer>…

Google Guava 散列工具使用详解

文章目录 散列哈希函数哈希码布隆过滤器 散列 Guava 提供了一组散列&#xff08;哈希&#xff09;相关的工具类和方法&#xff0c;包括哈希函数接口、哈希算法实现、哈希码&#xff08;HashCode&#xff09;类、布隆过滤器&#xff08;BloomFilter&#xff09;等等。 Guava 提…

【大连民族大学C语言CG题库练习题】——组合1

【问题描述】 给定两个整数 n 和 k&#xff0c;返回范围 [1, n] 中所有可能的 k 个数的组合。 你可以按 任何顺序 返回答案。 【输入形式】 【输出形式】 【样例输入】 4 2 【样例输出】 [2,4] [3,4] [2,3] [1,2] [1,3] [1,4] 【样例说明】 【评分标准】 代码思路&a…

吴恩达《机器学习》11-1-11-2:首先要做什么、误差分析

一、首先要做什么 选择特征向量的关键决策 以垃圾邮件分类器算法为例&#xff0c;首先需要决定如何选择和表达特征向量 &#x1d465;。视频提到的一个示例是构建一个由 100 个最常出现在垃圾邮件中的词构成的列表&#xff0c;根据这些词是否在邮件中出现来创建特征向量&…

Java CompletableFuture使用示例

在我之前的文章IO密集型服务提升性能的三种方法中提到过&#xff0c;提升IO密集型应用性能有个方式就是异步编程&#xff0c;实现异步时一定会用到Future&#xff0c;使用多线程Future我们可以让多个任务同时去执行&#xff0c;最后统一去获取执行结果&#xff0c;这样整体执行…

Docker下安装可视化工具Portainer

目录 Portainer简介 Portainer安装 Portainer简介 Portainer是一款开源的容器管理平台&#xff0c;支持多种容器技术&#xff0c;如Docker、Kubernetes和Swarm等。它提供了一个易于使用的Web UI界面&#xff0c;可用于管理和监控容器和集群。Portainer旨在使容器管理更加简单…