把大模型塞进终端,能让消费电子市场回暖吗?

过去几个月时间里,“把大模型塞进终端”已然成了消费电子产业上下游心照不宣的共识。

高通、AMD、英特尔等上游的芯片厂商,争相喊出了混合AI、终端AI、AI计算等概念,努力向外界讲述终端AI化的想象空间;华为、小米、vivo等手机厂商,纷纷将“大模型”搬到智能手机上,示范了智能助手、AI生图等应用场景;联想代表的PC厂商,也顺势讲出了AI PC的新故事……

相较于几年前围绕NPU的“小打小闹”,生成式AI无疑让整个消费电子产业看到了曙光:在全民都在讨论大模型的环境下,AI和终端的融合被视为新的创新锚点,将带动产业链共振。

甚至有人断言,这将是消费电子的下一个“春天”。

无可否认,消费电子产业已经行至十字路口,而拥抱生成式AI已经是唯一的选择。但“大模型”对于消费电子的影响到底有多大,能否改变长期低迷的市场现状?目前来看还有不少待解的问题。

01 消费电子渴望“春天”
AMD和IDC联合发布的《终端AI化:AI笔记本电脑引发场景变革》中,不经意间写出了笔记本电脑市场的症结所在:“用户可以使用同一台设备更长时间,而不需要进行升级或更换,市场的增长随之放缓。”

这样的结论,不仅仅适用于笔记本电脑,整个消费电子产业都陷入了低迷期。

首当其冲的就是PC市场。

根据IDC等市场调研机构的统计,PC市场的疲软已经持续了十几年。2011年全球PC出货量为3.524亿台左右,同比增长1.6%,此后便进入了长达七八年时间的低迷期,直到2020年前后衍生出的远程办公需求,才短暂刺激了PC销量的增长。刚刚结束的2023年第三季度,全球PC出货量约为6820万台,同比下降7.6%,亟需新的因素刺激消费。

同样的一幕也发生在智能手机市场。

(注:2023年出货量为IDC预估数据)

尽管不同调研机构的口径有所不同,但普遍认为出货量巅峰在2017年前后,之后市场开始进入下行周期。因为5G等新技术的出现,全球智能手机出货量在2021年短暂复苏,却未能持续太长时间。按照IDC的统计报告,2022年全球智能手机出货量同比下降11.3%,预计2023年的出货量比2022年减少4.7%,将创造10年以来的销量新低。

智能音箱、VR等新品类的表现一样不太理想。

经历过“千箱大战”的智能音箱,并未像预料中那般进入市场爆发期。以中国市场为例,洛图科技的调研报告显示,2023年第三季度,中国智能音箱市场全渠道的销量为481万台,同比下降16%,离预想中的爆发越来越远。至于VR眼镜,2023年第二季度的全球销量仅有144万台,且同比下滑37%,仍然处于市场酝酿阶段,远未表现出成为爆款的潜力。

消费电子市场的低迷,所影响的不单单是终端厂商,整个上下游产业链的业绩都在承压。

高通2023财年的营收为358.20亿美元,同比下降19%;AMD发布的2023年第三季度财报显示,PC业务部门的收入骤降40%;英特尔第三季度营收为141.58亿美元,同比下降8%,净利润同比下降71%。

产业链中游的企业同样不乐观。拿到华为Mate 60系列订单的欧菲光,2023年前三季度的营收依然有0.05%的下滑;“果链”概念股环旭电子,2023年前三季度营收430.57亿元,同比减少13.07%……

也就是说,消费电子产业上下游对生成式AI的追捧并不单纯,本质上希望靠大模型的卖点刺激新的增长。风头无二的大模型,承载着消费电子市场走出寒冬的希望。

正如天风证券的观点:“每轮消费电子景气周期主要是由技术进步引发的新需求所驱动,随着各类大模型的陆续发布,消费电子产品的用户体验有望在AI的赋能下被重新定义,加速下游消费电子产业的复苏节奏。”

02 “杀手级应用”仍缺位
大多数消费者属于感性和理性纠结的矛盾体,在钱包充裕的时候,他们愿意为一个新配色买单,而当收入预期不乐观的时候,哪怕是5G这样的新技术,也无法在消费者平静的内心里掀起太大的波澜。

现在需要产业链上下游回答的问题是:大模型的技术浪潮来了,可能否带来让消费者的感性战胜理性的“杀手级应用”?

最先答题的是智能手机厂商。

华为在8月份的鸿蒙4.0发布会上,官宣了智能助手的升级,原先局限于语音交互的手机助手,在大模型的赋能下,不仅支持用户使用自然语言进行交互,还能帮助用户输出小作文、图片、视频等内容。

短短两个月中,小米、vivo、三星、OPPO、荣耀等厂商,陆续公布了自研大模型的进展和特性。除了对语音助手进行大模型赋能,还给出了拍摄增强、检索照片、路人消除等应用。

即便是在新概念上以“保守”著称的苹果,也在财报中确认正在对AI和大模型进行布局:“我们将AI和机器学习视为基础核心技术,它们几乎嵌入到我们制造的每一个产品中,从今年秋天开始,iPhone将具备实时转录语音邮件的功能,我们将继续投资和创新。”

当然,这个过程中离不开芯片厂商的身影。

2023年中国国际服务贸易交易会上,高通进行了Stable Diffusion的终端侧演示,不到15秒的时间里,就能够在手机端完成一系列的推理,将用户输入的文字需求,生成一张512×512像素的图像。

联发科也适时向媒体露出,目前已经在与终端客户商讨AI大模型嵌入的相关方案,下一代旗舰芯片将整合最新的APU,为终端设备带来更强的AI能力,打造出类似ChatGPT的服务体验。

不同于终端厂商的是,芯片厂商还在和中游的合作伙伴联合探索更轻量、聚焦的落地场景。比如高通与慧鲤科技合作推出的“照片扩充”功能,可以通过AI补全已拍摄照片的周围景观,创造广角效果;联发科贴近中国消费者的习惯,展示了快速生成表情包的“文生趣图”功能。

可站在普通消费者的立场上,终端AI化的布局如火如荼,但在“喧闹”的背后,那些贴上AI标签的终端,并未给出让人眼前一亮的创新。无论是主打自然语言交互的智能助理,还是内容生成、图片处理等生成式AI的典型应用,目前恐怕都不是让用户换机的理由:下载一个大模型APP就能满足的需求,为何要花几千块去购买一个新产品?

想要刺激用户的消费欲望,仅仅把大模型塞进终端还远远不够。倘若拿不出真正的杀手级应用,所谓的生成式AI浪潮大概率会和5G一样,可以在某种程度上提振销量,但无法制造新一轮的景气周期。

03 终端扮演什么角色
早在2011年iPhone 4S上市前夕,网景公司联合创始人马克·安德森就曾提出“软件正在吞噬整个世界”的观点,认为“计算机和互联网革命都是以软件为基础,软件不仅在定义整个世界,也在重构整个世界。”

沿循这样的逻辑,生成式AI可以说是最符合“软件吞噬世界”的创新,以至于有人坦言:ChatGPT和电脑、互联网一样,都是超级工具。问题在于,在大模型统治的世界里,终端将扮演什么角色?

在互联网和移动互联网时代,入口一词频频被提及,充当着用户获取信息、解决问题的第一触点。当越来越多的大模型开始打造自己的“应用中心”,不断降低应用开发的门槛,再加上对话式的交互方式,俨然在从简单的技术赋能转向平台生态入口卡位。

也许在相当长一段时间内,大模型的“入口论”只是一种假设。但对AI化转型的终端而言,势必要想清楚自己的站位:和大模型厂商对抗、合作,疑惑是沦为被大模型吞噬的对象?

一种比较流行的思路是打造端侧大模型。

目前主流的大模型主要部署在云端,需要经过一个终端接收信号、云端运算、信息传输、终端发送结果的过程,由此产生了两个已知问题:一是数据出端会影响传输速度,二是潜在的数据和隐私安全。

被引用最多的例子就是三星的数据泄露事件,有员工在使用 ChatGPT 时将数据上传到云端,导致机密数据泄露。如果大模型的数据、推理、训练、运行等全部部署在终端,不仅解决了网络传输导致了延时,且无需将数据上传到云端,规避了隐私外泄的风险。

但当前在端侧普遍使用的是10亿、20亿参数规模的“小模型”,或许在高通、AMD等芯片厂商的努力下,端侧可以运行百亿以上参数的大模型,仍面临用户隐私、算力和功耗的平衡。大多数消费者的需求预期中,体验永远排在第一位,然后才是隐私、安全等问题。

另一种流行思路是端云结合的部署方式。

按照高通在《混合AI是AI的未来》中的说法:在以终端为中心的混合AI架构中,终端将充当锚点,云端仅用于分流处理终端无法充分执行的任务,在终端通过运行不太复杂的推理完成大部分处理工作。

荣耀CEO赵明、联想CEO杨元庆、vivo副总裁周围等都曾表达过对端云结合方式的青睐,不排除在自研大模型外,和外部主流大模型合作的可能,但目前还没有对应的产品或应用。

借用元智能联合创始人罗璇的猜想:“未来可能出现的情形是,手机上运行一个140亿参数的大模型作为OS(操作系统)的’发动机’,而云端则运行一个比GPT-4更大的模型,作为整个下一代互联网的底座。这两者将相互配合,如同当前的本地软件与互联网。”

不管哪一种思路会占据主流,都揭示了这样一个事实:或许终端厂商笃信AI化的趋势,但大模型和终端应该怎么融合,现阶段都还没想好或者说明确的路径。不过,对于高通、英特尔、AMD等芯片厂商来说,只要终端AI化的热度不降,未来两到三年的芯片销量就有了保障。

04 写在最后
曾经有媒体问任正非,怎样才能“抢占”高新技术的一席之地?任正非回答:首先不要有“抢占”这个概念,一抢,就泡沫化。

回到终端AI化的课题上,急于在营销层面抢占“AI终端”的概念,极端化地夸张所谓的AI性能,可能并不是一个好的选项。怎么将生成式AI部署到终端,融入用户的日常使用,带来新的生产力和增量价值,才是AI能否驱动消费电子销量增长的关键所在。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/193011.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

C 语言实现TCP 通信,以及地址复用

服务端 #include <stdio.h> #include <sys/types.h> #include <sys/socket.h> #include <unistd.h> #include <arpa/inet.h>int main() {//监听套接字文件描述符int listenFd -1;//连接套接字的文件描述符int connFd -1;//服务器的地址结构st…

c语言-联合体和枚举

文章目录 一、联合体1. 联合体类型的声明和创建2. 联合体的特点3. 联合体大小的计算4.总结 二、枚举1. 枚举类型的声明2. 枚举类型的优点3. 枚举类型的使用 一、联合体 &#xff08;1&#xff09; 像结构体⼀样&#xff0c;联合体也是由一个或者多个成员构成&#xff0c;这些成…

GEE:使用Roberts算子卷积核进行图像卷积操作

作者:CSDN @ _养乐多_ 本文将深入探讨边缘检测中的一个经典算法,即Roberts算子卷积。我们将介绍该算法的基本原理,并演示如何在Google Earth Engine中应用Roberts算子进行图像卷积操作。并以试验区NDVI为例子,研究区真彩色影像、NDVI图像以及卷积结果如下所示, 文章目录 …

LeetCode刷题---路径问题

顾得泉&#xff1a;个人主页 个人专栏&#xff1a;《Linux操作系统》 《C/C》 《LeedCode刷题》 键盘敲烂&#xff0c;年薪百万&#xff01; 一、不同路径 题目链接&#xff1a;不同路径 题目描述 一个机器人位于一个 m x n 网格的左上角 &#xff08;起始点在下图中标记…

Python---练习:列表赋值---追加append尾部追加元素,追加的是一个元素整体

相关链接&#xff1a; Python--列表及其应用场景---增、删、改、查。-CSDN博客 代码&#xff1a; # 列表赋值 a [1, 2, 3] a.append([3, 4]) # append尾部追加元素&#xff0c;追加的是一个元素整体&#xff1a;[3, 4] print(a)

【重点】【滑动窗口】3. 无重复字符的最长子串

题目 参考《算法小抄》重的解法&#xff0c;重点理解&#xff01;&#xff01;&#xff01; class Solution {public int lengthOfLongestSubstring(String s) {if (s.length() < 2) {return s.length();}char[] array s.toCharArray();int left 0, right 0, res 0;int…

面试题:为什么 wait/notify 必须与 synchronized 一起使用??

文章目录 为什么 java wait/notify 必须与 synchronized 一起使用synchronized是什么synchronized如何实现锁wait/notify不用synchronized 会怎么样[最终形态] 把lock和obj合一lost wake up 为什么 java wait/notify 必须与 synchronized 一起使用 这个问题就是书本上没怎么讲…

理解宏任务和微任务:JavaScript 异步编程的必备知识(上)

&#x1f90d; 前端开发工程师&#xff08;主业&#xff09;、技术博主&#xff08;副业&#xff09;、已过CET6 &#x1f368; 阿珊和她的猫_CSDN个人主页 &#x1f560; 牛客高级专题作者、在牛客打造高质量专栏《前端面试必备》 &#x1f35a; 蓝桥云课签约作者、已在蓝桥云…

react-native实践日记--5.ReactNative 项目版本升级,0.61到0.72升级的问题记录(一)

ReactNative的版本迭代太频繁&#xff0c;官方说的是React Native原则上每月发布一个新版本&#xff0c;且目前基本是向前不兼容的&#xff0c;导致项目升级很困难&#xff0c;各种依赖插件问题多多&#xff0c;下面是记录的升级中遇到的主要几个印象深刻的问题。 升级&#x…

教你5步学会用Llama2:我见过最简单的大模型教学

在这篇博客中&#xff0c;Meta 探讨了使用 Llama 2 的五个步骤&#xff0c;以便使用者在自己的项目中充分利用 Llama 2 的优势。同时详细介绍 Llama 2 的关键概念、设置方法、可用资源&#xff0c;并提供一步步设置和运行 Llama 2 的流程。 Meta 开源的 Llama 2 包括模型权重和…

Java开发项目之KTV点歌系统设计和实现

项目介绍 本系统实现KTV点歌管理的信息化&#xff0c;可以方便管理员进行更加方便快捷的管理。系统的主要使用者分为管理员和普通用户。 管理员功能模块&#xff1a; 个人中心、用户管理、歌曲库管理、歌曲类型管理、点歌信息管理。 普通用户功能模块&#xff1a; 个人中心…

一、CSharp_Basic:什么是.Net平台?什么是.Net FrameWork?什么是C#?

什么是.Net平台&#xff1f; 在了解C#之前&#xff0c;我们应该先了解一下什么是.Net平台。 .Net的诞生 2000年&#xff0c;这时候的微软凭借其Windows操作系统庞大的用户基数&#xff0c;推出了.Net1.0的标准。 也就是实现在Windows平台上面开发和应用程序的概念。我们可以简…

P3 Linux应用编程:系统调用与库函数

前言 &#x1f3ac; 个人主页&#xff1a;ChenPi &#x1f43b;推荐专栏1: 《C_ChenPi的博客-CSDN博客》✨✨✨ &#x1f525; 推荐专栏2: 《Linux C应用编程&#xff08;概念类&#xff09;_ChenPi的博客-CSDN博客》✨✨✨ &#x1f6f8;推荐专栏3: ​​​​​​《 链表_Chen…

shell脚本部署重启java服务

背景 一些小型项目未上k8s&#xff0c;直接在云服务器上部署&#xff0c;经常手动部署jar包&#xff0c;现记录常用shell脚本&#xff0c;里面都有注释&#xff0c;主要是重启服务。 #!/bin/bash# 定义应用程序名称和路径 JAR_NAME"demo-0.0.1.jar" JAR_PATH"…

BUUCTF [RoarCTF2019]黄金6年 1

BUUCTF:https://buuoj.cn/challenges 题目描述&#xff1a; 得到的 flag 请包上 flag{} 提交。 密文&#xff1a; 下载附件&#xff0c;得到.mp4文件。 attachment 解题思路&#xff1a; 1、浅浅的看了一遍&#xff0c;没发现什么有用的内容。放到Kinovea中&#xff0c;慢倍…

通用plantuml模板头

通用plantuml文件 startuml participant Admin order 0 #87CEFA // 参与者、顺序、颜色 participant Student order 1 #87CEFA participant Teacher order 2 #87CEFA participant TestPlayer order 3 #87CEFA participant Class order 4 #87CEFA participant Subject order …

轻量封装WebGPU渲染系统示例<42>- vsm阴影实现过程(源码)

前向实时渲染vsm阴影实现的主要步骤: 1. 编码深度数据&#xff0c;存到一个rtt中。 2. 纵向和横向执行遮挡信息blur filter sampling, 存到对应的rtt中。 3. 将上一步的结果(rtt)应用到可接收阴影的材质中。 具体代码情况文章最后附上的实现源码。 当前示例源码github地址: …

uniapp vue3.2+ts h5端分环境打包

根目录创建 package.json文件 {"name": "项目名称","version": "1.0.0","description": "","main": "main.js","scripts": {"test": "echo \"Error: no test…

力扣labuladong一刷day25天

力扣labuladong一刷day24天 一、870. 优势洗牌 题目链接&#xff1a;https://leetcode.cn/problems/advantage-shuffle/ 思路&#xff1a;这个就和田忌赛马是一样的&#xff0c;要求nums1[i]>nums2[i]才叫有优势&#xff0c;那么只需要把nums1和nums2都排序&#xff0c;逐…

react native 环境准备

一、必备安装 1、安装node 注意 Node 的版本应大于等于 16&#xff0c;安装完 Node 后建议设置 npm 镜像&#xff08;淘宝源&#xff09;以加速后面的过程&#xff08;或使用科学上网工具&#xff09;。 node下载地址&#xff1a;Download | Node.js设置淘宝源 npm config s…