LeetCode刷题---路径问题

顾得泉:个人主页

个人专栏:《Linux操作系统》  《C/C++》  《LeedCode刷题》

键盘敲烂,年薪百万!


一、不同路径

题目链接:不同路径

题目描述

       一个机器人位于一个 m x n 网格的左上角 (起始点在下图中标记为 “Start” )。

       机器人每次只能向下或者向右移动一步。机器人试图达到网格的右下角(在下图中标记为 “Finish” )。

       问总共有多少条不同的路径?

示例 1:

输入:m = 3, n = 7
输出:28

示例 2:

输入:m = 3, n = 2
输出:3
解释:
从左上角开始,总共有 3 条路径可以到达右下角。
1. 向右 -> 向下 -> 向下
2. 向下 -> 向下 -> 向右
3. 向下 -> 向右 -> 向下

示例 3:

输入:m = 7, n = 3
输出:28

示例 4:

输入:m = 3, n = 3
输出:6

提示:

  • 1 <= m, n <= 100
  • 题目数据保证答案小于等于 2 * 109

解法

1.状态表示:

    对于这种「路径类」的问题,我们的状态表示一般有两种形式:

          i.从[i,j]位置出发,巴拉巴拉;

          ii.从起始位置出发,到达[i,j]位置,巴拉巴拉。

    这里选择第二种定义状态表示的方式:

          dp[i][j]表示:走到[i,j]位置处,一共有多少种方式。

2.状态转移方程:

      简单分析一下。如果dp[i][j]表示到达〔[i,j]位置的方法数,那么到达[i,j]位置之前的一小步,有两种情况:

          i. 从[i,j位置的上方([i - 1,j]的位置)向下走一步,转移到[i,j]位置;

          ii.从[i,j位置的左方([i, j - 1]的位置)向右走一步,转移到[i,j]位置。

      由于我们要求的是有多少种方法,因此状态转移方程就呼之欲出了:

           dp[i][j] = dp[i - 1][j] + dp[i][j - 1]。

3.初始化:

      可以在最前面加上一个「辅助结点」,帮助我们初始化。使用这种技巧要注意两个点;

          i.辅助结点里面的值要「保证后续填表是正确的」;

          ii.「下标的映射关系」

      在本题中,「添加一行」,并且「添加一列」后,只需将 dple]的位置初始化为1即可

4.填表顺序:

       根据「状态转移方程」的推导来看,填表的顺序就是「从上往下」填每一行,在填写每一行的时候「从左往右」

5.返回值:

       根据「状态表示」,我们要返回dp[m][n]的值

代码实现

class Solution {
public:int uniquePaths(int m, int n) {vector<vector<int>> dp(m + 1, vector<int>(n + 1));dp[0][1] = 1;for(int i = 1; i <= m; i++){for(int j = 1; j <= n; j++){dp[i][j] = dp[i-1][j] + dp[i][j-1];}}return dp[m][n];}
};

二、不同路径Ⅱ

题目链接:不同路径 II

题目描述

       一个机器人位于一个 m x n 网格的左上角 (起始点在下图中标记为 “Start” )。

       机器人每次只能向下或者向右移动一步。机器人试图达到网格的右下角(在下图中标记为 “Finish”)。

       现在考虑网格中有障碍物。那么从左上角到右下角将会有多少条不同的路径?

       网格中的障碍物和空位置分别用 1 和 0 来表示。

示例 1:

输入:obstacleGrid = [[0,0,0],[0,1,0],[0,0,0]]
输出:2
解释:3x3 网格的正中间有一个障碍物。
从左上角到右下角一共有2条不同的路径:1. 向右 -> 向右 -> 向下 -> 向下2. 向下 -> 向下 -> 向右 -> 向右

示例 2:

输入:obstacleGrid = [[0,1],[0,0]]
输出:1

提示:

  • m == obstacleGrid.length
  • n == obstacleGrid[i].length
  • 1 <= m, n <= 100
  • obstacleGrid[i][j] 为 0 或 1

解法

       本题为不同路径的变型,只不过有些地方有「障碍物」,只要在「状态转移」上稍加修改就可解决。

1.状态表示:

     对于这种「路径交!的问题,我们的状态表示一般有两种形式:

          i. 从j位置出发,巴拉巴拉;

          ii.从起始位置出发,到达[i,j]位置,巴拉巴拉。

     这里选择第二种定义状态表示的方式:

        dp[i][j]表示:走到[i,j]位置处,一共有多少种方式。

2.状态转移:

      简单分析一下。如果dp[i][j]表示到达[i,j]位置的方法数,那么到达[i,j]位置之前的一小步,有两种情况:

       i. 从[i,j]位置的上方([i - 1,j]的位置)向下走一步,转移到[i,j]位置;

       ii.从[i,j]位置的左方([i, j - 1]的位置)向右走一步,转移到[i,j]位置。但是,[i - 1,j]与[i, j - 1]位置都是可能有障碍的,此时从上面或者左边是不可能到达[i,j]位置的,也就是说,此时的方法数应该是0。

      由此我们可以得出一个结论,只要这个位置上「有障碍物」,那么我们就不需要计算这个位置上的值,直接让它等于0即可。

3.初始化:

      可以在最前面加上一个「辅助结点」,帮助我们初始化。使用这种技巧要注意两个点:

           i.辅助结点里面的值要「保证后续填表是正确的」;

           ii.「下标的映射关系」。

      在本题中,添加一行,并且添加一列后,只需将dp[1][0]的位置初始化为

4.填表顺序:

       根据「状态转移」的推导,填表的顺序就是「从上往下」填每一行,每一行「从左往右」

5.返回值:

       根据「状态表示」,我们要返回的结果是dp[m][n]

代码实现

class Solution {
public:int uniquePathsWithObstacles(vector<vector<int>>& ob) {int m = ob.size(), n = ob[0].size();vector<vector<int>> dp(m + 1, vector<int>(n + 1));dp[0][1] = 1;for(int i = 1; i <= m; i++){for(int j = 1; j <= n; j++){if(ob[i-1][j-1] == 0){dp[i][j] = dp[i-1][j] + dp[i][j-1];}}}return dp[m][n];}
};

三、珠宝的最高价值

题目链接:珠宝的最高价值

题目描述

       现有一个记作二维矩阵 frame 的珠宝架,其中 frame[i][j] 为该位置珠宝的价值。拿取珠宝的规则为:

  • 只能从架子的左上角开始拿珠宝
  • 每次可以移动到右侧或下侧的相邻位置
  • 到达珠宝架子的右下角时,停止拿取

       注意:珠宝的价值都是大于 0 的。除非这个架子上没有任何珠宝,比如 frame = [[0]]

示例 1:

输入: frame = [[1,3,1],[1,5,1],[4,2,1]]
输出: 12
解释: 路径 1→3→5→2→1 可以拿到最高价值的珠宝

提示:

  • 0 < frame.length <= 200
  • 0 < frame[0].length <= 200

解法

1.状态表示:

     对于这种「路径类」的问题,我们的状态表示一般有两种形式:

          i. 从[i,j]位置出发,巴拉巴拉;

          ii.从起始位置出发,到达[i,j]位置,巴拉巴拉。

     这里选择第二种定义状态表示的方式:

          dp[i][j]表示:走到[i,j]位置处,此时的最大价值。

2.状态转移方程:

     对于dp[i][j],我们发现想要到达[i,j位置,有两种方式:

          i. 从[i,j位置的上方[i - 1,j]位置,向下走一步,此时到达,j位置能拿到的珠宝价值为dp[i - 1][j]+grid[i][j];

          ii. 从[i,j]位置的左边〔[i,j - 1]位置,向右走一步,此时到达[i,j位置能拿到的珠宝价值为dp[i][j - 1]+grid[i][j]

     我们要的是最大值,因此状态转移方程为:

          dp[i][j] = max ( dp[i - 1][j], dp[i][j - 1]) + grid[i][j]

3.初始化:

     可以在最前面加上一个「辅助结点」,帮助我门初始化。使用这种技巧要注意两个点:

          i.辅助结点里面的值要「保证后续填表是正确的」;

          ii.「下标的映射关系」

      在本题中,「添加一行」﹐并耳「添加一」后,所有的值都为即可

4.填表顺序:

      根据「状态转移方程,填表的顺序是「从上往下填写每一行」,「每一行从左往右」

5.返回值:

      根据「状态表示」,我们应该返回dp [m][n]的值

代码实现

class Solution {
public:int jewelleryValue(vector<vector<int>>& frame) {int m = frame.size(), n = frame[0].size();vector<vector<int>> dp(m + 1, vector<int>(n + 1));for(int i = 1; i <= m; i++){for(int j = 1; j <= n; j++)dp[i][j] = max(dp[i - 1][j], dp[i][j - 1]) + frame[i - 1][j - 1];}return dp[m][n];}
};

四、向下路径最小和

题目链接:下降路径最小和

题目描述

       给你一个 n * n 的 方形 整数数组 matrix ,请你找出并返回通过 matrix 的下降路径  最小和 。

       下降路径 可以从第一行中的任何元素开始,并从每一行中选择一个元素。在下一行选择的元素和当前行所选元素最多相隔一列(即位于正下方或者沿对角线向左或者向右的第一个元素)。具体来说,位置 (row, col) 的下一个元素应当是 (row + 1, col - 1)(row + 1, col) 或者 (row + 1, col + 1) 。

示例 1:

输入:matrix = [[2,1,3],[6,5,4],[7,8,9]]
输出:13
解释:如图所示,为和最小的两条下降路径

示例 2:

输入:matrix = [[-19,57],[-40,-5]]
输出:-59
解释:如图所示,为和最小的下降路径

提示:

  • n == matrix.length == matrix[i].length
  • 1 <= n <= 100
  • -100 <= matrix[i][j] <= 100

解法

       关于这一类题,由于我们做过类似的,勾此「状态表示」以及「状态转移」是比较容易分析出来的。比较难的地方可能就是对于边界条件的处理。

1.状态表示:

      对于这种「路径类」的问题,我们的状态表示一般有两种形式:

           i. 从[i,j位置出发,到达目标位置有多少种方式;

           ii.从起始位置出发,到达[i,j]位置,一共有多少种方式

      这里选择第二种定义状态表示的方式:

           dp[i][j]表示:到达[i,j]位置时,所有下降路径中的最小和

2.状态转移方程:

      对于普遍位置[i,j],根据题意得,到达[i,j位置可能有三种情况:

          i.从正上方[i - 1,j]位置转移到[i,j]位置;

          ii.从左上方[i - 1,j - 1]位置转移到[i,j]位置;

          iii.从右上方[i - 1, j +1]位置转移到[i,j]位置;

      我们要的是三种情况下的「最小值」,然后再加上矩阵在[i,j]位置的值

      于是dp[i][j] = min(dp[i - 1][j],min(dp[i - 1][j - 1],dp[i - 1][j +1])) + matrix[i][j]

3.初始化:

      可以在最前面加上一个「辅助结点」,帮助我们初始化。使用这种技巧要注意两个点:

          i.辅助结点里面的值要「保证后续填表是正确的」;

          ii. 「下标的映射关系」

      在本题中,需要「加上一行」,并且「加上两列」。所有的位置都初始化为无穷大,然后将第一行初始化为0即可

4.填表顺序:

      根据「状态表示」,填表的顺序是「从上往下」

5.返回值:

      注意这里不是返回dp [m][n]的值!

      题目要求「只要到达最后一行就行了,因此这里应该返回「 dp表中最后一行的最小值」

代码实现

class Solution {
public:int minFallingPathSum(vector<vector<int>>& matrix) {int n = matrix.size();vector<vector<int>> dp(n + 1, vector<int>(n + 2, INT_MAX));for(int j = 0; j < n + 2; j++)dp[0][j] = 0;for(int i = 1; i <= n; i++){for(int j = 1; j <= n; j++){dp[i][j] = min(dp[i-1][j-1], min(dp[i-1][j], dp[i-1][j+1])) + matrix[i-1][j-1];}}int ret = INT_MAX;for(int j = 1; j <= n; j++)ret = min(ret, dp[n][j]);return ret;}
};

五、最小路径和

题目链接:最小路径和

题目描述

给定一个包含非负整数的 m x n 网格 grid ,请找出一条从左上角到右下角的路径,使得路径上的数字总和为最小。

说明:每次只能向下或者向右移动一步。

示例 1:

输入:grid = [[1,3,1],[1,5,1],[4,2,1]]
输出:7
解释:因为路径 1→3→1→1→1 的总和最小。

示例 2:

输入:grid = [[1,2,3],[4,5,6]]
输出:12

提示:

  • m == grid.length
  • n == grid[i].length
  • 1 <= m, n <= 200
  • 0 <= grid[i][j] <= 200

解法

      像这种表格形式的动态规划,是非常容易得到「状态表示」以及下状态转移方程」的,可以归结到「不同路径」一类的题里面。

1.状态表示:

      对于这种路径类的问题,我们的状态表示一般有两种形式:

          i. 从[i,j]位置出发,巴拉巴拉;

          ii.从起始位置出发,到达[i, j]位置,巴拉巴拉。

      这里选择第二种定义状态表示的方式:

          dp[i][j]表示:到达[i, j]位置处,最小路径和是多少。

2.状态转移:

      简单分析一下。如果dp[i][j]表示到达到达[i,j]位置处的最小路径和,那么到达[i,j]位置之前的一小步,有两种情况:

          i.从[i - 1,j]向下走一步,转移到[i,j]位置;

          ii. 从[i,j - 1]向右走一步,转移到[i,j]位置。

      由于到([i,j]位置两种情况,并且我们要找的是最小路径,因此只需要这两种情况下的最小值,再加上[i,j]位置上本身的值即可。

      也就是:dp[i[j]= min(dp[i - 1][j],dp[i][j - 1])+ grid[i][j]

3.初始化:

      可以在最前面加上一个「辅助结点」,帮助我们初始化。

      使用这种技巧要注意两个点:

          i.辅助结点里面的值要「保证后续填表是正确的」;

          ii.「下标的映射关系」

       在本题中,「添加一行」,并且「添加一列」后,所有位置的值可以初始化为无穷大,然后让dp[0][1] = dp[1][0] = 1即可

4.填表顺序:

     根据「状态转移方程」的推导来看,填表的顺序就是「从上往下」填每一行,每一行「从左往后」

5.返回值:

      根据「状态表示」,我们要返回的结果是dp[m][n]

代码实现

class Solution {
public:int minPathSum(vector<vector<int>>& grid) {int m = grid.size(), n = grid[0].size();vector<vector<int>> dp(m + 1, vector<int>(n + 1, INT_MAX));dp[0][1] = dp[1][0] = 0;for(int i = 1; i <= m; i++){for(int j = 1; j <= n;j++){dp[i][j] = min(dp[i-1][j], dp[i][j-1]) + grid[i-1][j-1];}}return dp[m][n];}
};

六、地下城游戏

题目链接:地下城游戏 

题目描述

       恶魔们抓住了公主并将她关在了地下城 dungeon 的 右下角 。地下城是由 m x n 个房间组成的二维网格。我们英勇的骑士最初被安置在 左上角 的房间里,他必须穿过地下城并通过对抗恶魔来拯救公主。

       骑士的初始健康点数为一个正整数。如果他的健康点数在某一时刻降至 0 或以下,他会立即死亡。

       有些房间由恶魔守卫,因此骑士在进入这些房间时会失去健康点数(若房间里的值为负整数,则表示骑士将损失健康点数);其他房间要么是空的(房间里的值为 0),要么包含增加骑士健康点数的魔法球(若房间里的值为正整数,则表示骑士将增加健康点数)。

       为了尽快解救公主,骑士决定每次只 向右 或 向下 移动一步。

       返回确保骑士能够拯救到公主所需的最低初始健康点数。

注意:任何房间都可能对骑士的健康点数造成威胁,也可能增加骑士的健康点数,包括骑士进入的左上角房间以及公主被监禁的右下角房间。

示例 1:

输入:dungeon = [[-2,-3,3],[-5,-10,1],[10,30,-5]]
输出:7
解释:如果骑士遵循最佳路径:右 -> 右 -> 下 -> 下 ,则骑士的初始健康点数至少为 7 。

示例 2:

输入:dungeon = [[0]]
输出:1

提示:

  • m == dungeon.length
  • n == dungeon[i].length
  • 1 <= m, n <= 200
  • -1000 <= dungeon[i][j] <= 1000

解法

1.状态表示:

      这道题如果我们定义成:从起点开始,到达[i,j]位置的时候,所需的最低初始健康点数。

      那么我们分析状态转移的时候会有一个问题:那就是我们当前的健康点数还会受到后面的路径的影响。也就是从上往下的状态转移不能很好地解决问题。

      这个时候我们要换一种状态表示:从[i,j]位置出发,到达终点时所需要的最低初始健康点数。这样我们在分析状态转移的时候,后续的最佳状态就已经知晓。

      综上定义状态表示为:

          dp[i][j]表示:从[i,j]位置出发,到达终点时所需的最低初始健康点数

2.状态转移方程:

      对于dp[i][j],从[i,j]位置出发,下一步会有两种选择(为了方便理解,设dp[i][j]的最终答案是×) :

          i.走到右边,然后走向终点

          那么我们在[i,j位置的最低健康点数加上这一个位置的消耗,应该要大于等于右边位置的最低健康点数,也就是:x + dungeon[i][j] >= dp[i][j + 1]

      通过移项可得:x >= dp[i][i+1] - dungeon[i][j]。

因为我们要的是最小值,因此这种情况下的x = dp[i][j+1] - dungeon[i][j];

          ii.走到下边,然后走向终点

          那么我们在[i,j]位围的最低健康点数加上这一个位置的消耗,应该要大于等于下边位置的最低健康点数,也就是: x+ dungeon[i][j] >= dp[i + 1][j]

          通过移项可得:x >= dp[i+1][j] - dungeon[i][j]。因为我们要的是最小值,因此这种情况下的 dp[i + 1][j] - dungeon[i][j];

      综上所述,我们需要的是两种情况下的最小值,因此可得状态转移方程为:

          dp[i][j] = min(dp[i + 1][j],dp[i][j + 1]) - dungeon[i][j]

      但是,如果当前位置的 dungeon[i][j]是一个比较大的正数的话,dp[i][j]的值可能变成或者负数。也就是最低点数会小于1,那么骑士就会死亡。因此我们求出来的 dp[i][j]如果小于等于0的话,说明此时的最低初始值应该为1。处理这种情况仅需让dp[i][j]与1取一个最大值即可:

          dp[i][j] = max(1,dp[i][j])

3.初始化:

      可以在最前面加上一个「辅助结点」,帮助我们初始化。使用这种技巧要注意两个点:

          i.辅助结点里面的值要「保证后续填表是正确的」

          ii.「下标的映射关系」

      在本题中,在dp表最后面添加一行,并且添加一列后,所有的值都先初始化为无穷大,然后让dp[m][n - 1] = dp[m - 1][n] = 1即可

4.填表顺序:

      根据「状态转移方程」,我们需要「从下往上填每一行」,「每一行从右往左」

5.返回值:

      根据「状态表示」,我们需要返回dp[0][0]的值

代码实现

class Solution {
public:int calculateMinimumHP(vector<vector<int>>& dungeon) {int m = dungeon.size(), n = dungeon[0].size();vector<vector<int>> dp(m + 1, vector<int>(n + 1, INT_MAX));dp[m][n-1]=dp[m-1][n] = 1;for(int i = m - 1; i >= 0; i--)for(int j = n - 1; j >= 0; j--){    dp[i][j] = min(dp[i + 1][j], dp[i][j+ 1]) - dungeon[i][j];dp[i][j] = max(1, dp[i][j]);}return dp[0][0];}
};

结语:今日的刷题分享到这里就结束了,希望本篇文章的分享会对大家的学习带来些许帮助,如果大家有什么问题,欢迎大家在评论区留言~~~ 

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/193007.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

Python---练习:列表赋值---追加append尾部追加元素,追加的是一个元素整体

相关链接&#xff1a; Python--列表及其应用场景---增、删、改、查。-CSDN博客 代码&#xff1a; # 列表赋值 a [1, 2, 3] a.append([3, 4]) # append尾部追加元素&#xff0c;追加的是一个元素整体&#xff1a;[3, 4] print(a)

面试题:为什么 wait/notify 必须与 synchronized 一起使用??

文章目录 为什么 java wait/notify 必须与 synchronized 一起使用synchronized是什么synchronized如何实现锁wait/notify不用synchronized 会怎么样[最终形态] 把lock和obj合一lost wake up 为什么 java wait/notify 必须与 synchronized 一起使用 这个问题就是书本上没怎么讲…

理解宏任务和微任务:JavaScript 异步编程的必备知识(上)

&#x1f90d; 前端开发工程师&#xff08;主业&#xff09;、技术博主&#xff08;副业&#xff09;、已过CET6 &#x1f368; 阿珊和她的猫_CSDN个人主页 &#x1f560; 牛客高级专题作者、在牛客打造高质量专栏《前端面试必备》 &#x1f35a; 蓝桥云课签约作者、已在蓝桥云…

教你5步学会用Llama2:我见过最简单的大模型教学

在这篇博客中&#xff0c;Meta 探讨了使用 Llama 2 的五个步骤&#xff0c;以便使用者在自己的项目中充分利用 Llama 2 的优势。同时详细介绍 Llama 2 的关键概念、设置方法、可用资源&#xff0c;并提供一步步设置和运行 Llama 2 的流程。 Meta 开源的 Llama 2 包括模型权重和…

Java开发项目之KTV点歌系统设计和实现

项目介绍 本系统实现KTV点歌管理的信息化&#xff0c;可以方便管理员进行更加方便快捷的管理。系统的主要使用者分为管理员和普通用户。 管理员功能模块&#xff1a; 个人中心、用户管理、歌曲库管理、歌曲类型管理、点歌信息管理。 普通用户功能模块&#xff1a; 个人中心…

一、CSharp_Basic:什么是.Net平台?什么是.Net FrameWork?什么是C#?

什么是.Net平台&#xff1f; 在了解C#之前&#xff0c;我们应该先了解一下什么是.Net平台。 .Net的诞生 2000年&#xff0c;这时候的微软凭借其Windows操作系统庞大的用户基数&#xff0c;推出了.Net1.0的标准。 也就是实现在Windows平台上面开发和应用程序的概念。我们可以简…

P3 Linux应用编程:系统调用与库函数

前言 &#x1f3ac; 个人主页&#xff1a;ChenPi &#x1f43b;推荐专栏1: 《C_ChenPi的博客-CSDN博客》✨✨✨ &#x1f525; 推荐专栏2: 《Linux C应用编程&#xff08;概念类&#xff09;_ChenPi的博客-CSDN博客》✨✨✨ &#x1f6f8;推荐专栏3: ​​​​​​《 链表_Chen…

BUUCTF [RoarCTF2019]黄金6年 1

BUUCTF:https://buuoj.cn/challenges 题目描述&#xff1a; 得到的 flag 请包上 flag{} 提交。 密文&#xff1a; 下载附件&#xff0c;得到.mp4文件。 attachment 解题思路&#xff1a; 1、浅浅的看了一遍&#xff0c;没发现什么有用的内容。放到Kinovea中&#xff0c;慢倍…

通用plantuml模板头

通用plantuml文件 startuml participant Admin order 0 #87CEFA // 参与者、顺序、颜色 participant Student order 1 #87CEFA participant Teacher order 2 #87CEFA participant TestPlayer order 3 #87CEFA participant Class order 4 #87CEFA participant Subject order …

轻量封装WebGPU渲染系统示例<42>- vsm阴影实现过程(源码)

前向实时渲染vsm阴影实现的主要步骤: 1. 编码深度数据&#xff0c;存到一个rtt中。 2. 纵向和横向执行遮挡信息blur filter sampling, 存到对应的rtt中。 3. 将上一步的结果(rtt)应用到可接收阴影的材质中。 具体代码情况文章最后附上的实现源码。 当前示例源码github地址: …

react native 环境准备

一、必备安装 1、安装node 注意 Node 的版本应大于等于 16&#xff0c;安装完 Node 后建议设置 npm 镜像&#xff08;淘宝源&#xff09;以加速后面的过程&#xff08;或使用科学上网工具&#xff09;。 node下载地址&#xff1a;Download | Node.js设置淘宝源 npm config s…

GEE:梯度卷积

作者:CSDN @ _养乐多_ 本文将介绍在 Google Earth Engine(GEE)平台上,进行梯度卷积操作的代码框架、核心函数和多种卷积核,比如 Roberts、Prewitt、Sobel、各向同性算子、Compass算子、拉普拉斯算子、不同方向线性检测算子等。 结果如下图所示, 文章目录 一、常用的梯度…

数学建模之典型相关分析

发现新天地,欢迎访问 介绍 典型相关分析&#xff08;Canonical Correlation analysis&#xff09;研究两组变量&#xff08;每组变量中都可能有多个指标&#xff09;之间相关关系的一种多元统计方法。它能够揭示出两组变量之间的内在联系。 例子 我们要探究观众和业内人士对…

非应届生简历模板13篇

无论您是职场新人还是转行求职者&#xff0c;一份出色的简历都是获得心仪岗位的关键。本文为大家精选了13篇专业的非应届生简历模板&#xff0c;无论您的经验如何&#xff0c;都可以灵活参考借鉴&#xff0c;提升自己的简历质量。让简历脱颖而出&#xff0c;轻松斩获心仪职位&a…

16.字符串处理函数——字符串长度函数

文章目录 前言一、题目描述 二、解题 程序运行代码 总结 前言 本系列为字符串处理函数编程题&#xff0c;点滴成长&#xff0c;一起逆袭。 一、题目描述 二、解题 程序运行代码 #include<stdio.h> #include<string.h> int main() {char str[ ]"0123\0456…

mac安装解压缩rar后缀文件踩坑

mac默认能够解压缩zip后缀的文件&#xff0c;如果是rar后缀的自己需要下载相关的工具解压 下载地址&#xff1a; https://www.rarlab.com/download.htm mac我是因特尔芯片所以下载 x64 然后解压缩文件进入目录 rar中 将可执行文件 rar、unrar 移动到 /usr/local/bin目录下即…

[架构之路-254]:目标系统 - 设计方法 - 软件工程 - 软件设计 - 架构设计 - 全程概述

目录 一、软件架构概述 1.1 什么是软件架构 1.2 为什么需要软件架构设计 1.3 软件架构设计在软件设计中位置 &#xff08;1&#xff09;软件架构设计&#xff08;层次划分、模块划分、职责分工&#xff09;&#xff1a; &#xff08;2&#xff09;软件高层设计、概要设计…

精准长尾关键词批量挖掘工具,长尾关键词挖掘正确使用方法

互联网时代&#xff0c;SEO已然成为网站推广的关键一环。而在SEO的世界里&#xff0c;长尾关键词无疑是一块被广泛忽视却蕴含着巨大潜力的宝地。 什么是长尾关键词 长尾关键词&#xff0c;指的是那些相对不那么热门、搜索量较低但更为具体、更贴近用户真实需求的关键词。与短…

VR 实现 Splash Screen 效果

文章目录 背景官方实现逆向分析 背景 手机 App 在实现 Splash Screen 的时候&#xff0c;目前都有成熟的方案可以参考&#xff0c;但是在做 VR 开发时&#xff0c;要如何实现一个 App 自己的 Splash Screen &#xff0c;下面是我们基于 PICO & OCULUS 进行业务开发时经过探…

Linux:dockerfile编写搭建nginx练习(8)

dockerfile是创建镜像的一种&#xff0c;通过已有镜像的基础上再在上面部署一些别的。 在这个基础镜像上搭建&#xff0c;我这个是一个空的centos镜像 我这里用http的yum仓库存放了nginx和rpm包 创建dockerfile vim Dockerfile写入#设置基础镜像 FROM centos#维护该镜像的用户…