43 - 什么是数据的强、弱一致性?

说到一致性,其实在系统的很多地方都存在数据一致性的相关问题。除了在并发编程中保证共享变量数据的一致性之外,还有数据库的 ACID 中的 C(Consistency 一致性)、分布式系统的 CAP 理论中的 C(Consistency 一致性)。下面我们主要讨论的就是“并发编程中共享变量的一致性”。

在并发编程中,Java 是通过共享内存来实现共享变量操作的,所以在多线程编程中就会涉及到数据一致性的问题。

我先通过一个经典的案例来说明下多线程操作共享变量可能出现的问题,假设我们有两个线程(线程 1 和线程 2)分别执行下面的方法,x 是共享变量:

// 代码 1
public class Example {int x = 0;public void count() {x++;                     //1System.out.println(x)//2}
}

img

如果两个线程同时运行,两个线程的变量的值可能会出现以下三种结果:

img

1、Java 存储模型

2,1 和 1,2 的结果我们很好理解,那为什么会出现以上 1,1 的结果呢?

我们知道,Java 采用共享内存模型来实现多线程之间的信息交换和数据同步。在解释为什么会出现这样的结果之前,我们先通过下图来简单了解下 Java 的内存模型(第 21 讲还会详解),程序在运行时,局部变量将会存放在虚拟机栈中,而共享变量将会被保存在堆内存中。

img

由于局部变量是跟随线程的创建而创建,线程的销毁而销毁,所以存放在栈中,由上图我们可知,Java 栈数据不是所有线程共享的,所以不需要关心其数据的一致性。

共享变量存储在堆内存或方法区中,由上图可知,堆内存和方法区的数据是线程共享的。而堆内存中的共享变量在被不同线程操作时,会被加载到自己的工作内存中,也就是 CPU 中的高速缓存。

CPU 缓存可以分为一级缓存(L1)、二级缓存(L2)和三级缓存(L3),每一级缓存中所储存的全部数据都是下一级缓存的一部分。当 CPU 要读取一个缓存数据时,首先会从一级缓存中查找;如果没有找到,再从二级缓存中查找;如果还是没有找到,就从三级缓存或内存中查找。

如果是单核 CPU 运行多线程,多个线程同时访问进程中的共享数据,CPU 将共享变量加载到高速缓存后,不同线程在访问缓存数据的时候,都会映射到相同的缓存位置,这样即使发生线程的切换,缓存仍然不会失效。

如果是多核 CPU 运行多线程,每个核都有一个 L1 缓存,如果多个线程运行在不同的内核上访问共享变量时,每个内核的 L1 缓存将会缓存一份共享变量。

假设线程 A 操作 CPU 从堆内存中获取一个缓存数据,此时堆内存中的缓存数据值为 0,该缓存数据会被加载到 L1 缓存中,在操作后,缓存数据的值变为 1,然后刷新到堆内存中。

在正好刷新到堆内存中之前,又有另外一个线程 B 将堆内存中为 0 的缓存数据加载到了另外一个内核的 L1 缓存中,此时线程 A 将堆内存中的数据刷新到了 1,而线程 B 实际拿到的缓存数据的值为 0。

此时,内核缓存中的数据和堆内存中的数据就不一致了,且线程 B 在刷新缓存到堆内存中的时候也将覆盖线程 A 中修改的数据。这时就产生了数据不一致的问题。

img

了解完内存模型之后,结合以上解释,我们就可以回过头来看看第一段代码中的运行结果是如何产生的了。看到这里,相信你可以理解图中 1,1 的运行结果了。

img

2、重排序

除此之外,在 Java 内存模型中,还存在重排序的问题。请看以下代码:

// 代码 1
public class Example {int x = 0;boolean flag = false;public void writer() {x = 1;                //1flag = true;          //2}public void reader() {if (flag) {           //3int r1 = x;      //4System.out.println(r1==x)}}
}

img

如果两个线程同时运行,线程 2 中的变量的值可能会出现以下两种可能:

img

现在一起来看看 r1=1 的运行结果,如下图所示:

img

那 r1=0 又是怎么获取的呢?我们再来看一个时序图:

img

在不影响运算结果的前提下,编译器有可能会改变顺序代码的指令执行顺序,特别是在一些可以优化的场景。

例如,在以下案例中,编译器为了尽可能地减少寄存器的读取、存储次数,会充分复用寄存器的存储值。如果没有进行重排序优化,正常的执行顺序是步骤 1\2\3,而在编译期间进行了重排序优化之后,执行的步骤有可能就变成了步骤 1/3/2 或者 2/1/3,这样就能减少一次寄存器的存取次数。

int x = 1;// 步骤 1:加载 x 变量的内存地址到寄存器中,加载 1 到寄存器中,CPU 通过 mov 指令把 1 写入到寄存器指定的内存中
boolean flag = true; // 步骤 2 加载 flag 变量的内存地址到寄存器中,加载 true 到寄存器中,CPU 通过 mov 指令把 1 写入到寄存器指定的内存中
int y = x + 1;// 步骤 3 重新加载 a 变量的内存地址到寄存器中,加载 1 到寄存器中,CPU 通过 mov 指令把 1 写入到寄存器指定的内存中

在 JVM 中,重排序是十分重要的一环,特别是在并发编程中。可 JVM 要是能对它们进行任意排序的话,也可能会给并发编程带来一系列的问题,其中就包括了一致性的问题。

3、Happens-before 规则

为了解决这个问题,Java 提出了 Happens-before 规则来规范线程的执行顺序:

  • 程序次序规则:在单线程中,代码的执行是有序的,虽然可能会存在运行指令的重排序,但最终执行的结果和顺序执行的结果是一致的;
  • 锁定规则:一个锁处于被一个线程锁定占用状态,那么只有当这个线程释放锁之后,其它线程才能再次获取锁操作;
  • volatile 变量规则:如果一个线程正在写 volatile 变量,其它线程读取该变量会发生在写入之后;
  • 线程启动规则:Thread 对象的 start() 方法先行发生于此线程的其它每一个动作;
  • 线程终结规则:线程中的所有操作都先行发生于对此线程的终止检测;
  • 对象终结规则:一个对象的初始化完成先行发生于它的 finalize() 方法的开始;
  • 传递性:如果操作 A happens-before 操作 B,操作 B happens-before 操作 C,那么操作 A happens-before 操作 C;
  • 线程中断规则:对线程 interrupt() 方法的调用先行发生于被中断线程的代码检测到中断事件的发生。

结合这些规则,我们可以将一致性分为以下几个级别:

严格一致性(强一致性):所有的读写操作都按照全局时钟下的顺序执行,且任何时刻线程读取到的缓存数据都是一样的,Hashtable 就是严格一致性;

img

顺序一致性:多个线程的整体执行可能是无序的,但对于单个线程而言执行是有序的,要保证任何一次读都能读到最近一次写入的数据,volatile 可以阻止指令重排序,所以修饰的变量的程序属于顺序一致性;

img

弱一致性:不能保证任何一次读都能读到最近一次写入的数据,但能保证最终可以读到写入的数据,单个写锁 + 无锁读,就是弱一致性的一种实现。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/192354.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

Android studio Load error:undefined path variables

android stuido 报错 Load error:undefined path variables Gson is undefined 处理方法: 点击进行Sync Project with Gradle Files

Redis——某马点评day02——商铺缓存

什么是缓存 添加Redis缓存 添加商铺缓存 Controller层中 /*** 根据id查询商铺信息* param id 商铺id* return 商铺详情数据*/GetMapping("/{id}")public Result queryShopById(PathVariable("id") Long id) {return shopService.queryById(id);} Service…

文心版吴恩达课程:语义核心(Semantic Kernel)插件的商业应用

文心版吴恩达课程:语义核心(Semantic Kernel)插件的商业应用 Semantic Kernel is an SDK that integrates Large Language Models (LLMs) like OpenAI, Azure OpenAI, and Hugging Face with conventional programming languages like C#, P…

leetcode:225. 用队列实现栈

一、题目 链接:225. 用队列实现栈 - 力扣(LeetCode) 函数原型: typedef struct { } MyStack; MyStack* myStackCreate() void myStackPush(MyStack* obj, int x) int myStackPop(MyStack* obj) int myStackTop(MyStack* obj) …

代码随想录刷题题Day4

刷题的第四天,希望自己能够不断坚持下去,迎来蜕变。😀😀😀 刷题语言:C / Python Day4 任务 ● 24. 两两交换链表中的节点 ● 19.删除链表的倒数第N个节点 ● 面试题 02.07. 链表相交 ● 142.环形链表II 1 …

大数据技术之Flume(超级详细)

大数据技术之Flume(超级详细) 第1章 概述 1.1 Flume定义 Flume是Cloudera提供的一个高可用的,高可靠的,分布式的海量日志采集、聚合和传输的系统。Flume基于流式架构,灵活简单。 1.2 Flume组成架构 Flume组成架构如…

react-route-dom 实现简单的嵌套路由

最终效果 点击 to test1 点击to test2 > to test21 点击to test2 > to test22 代码如下 path: "page",element: <父组件 />,children: [{ path: "test1", element: <Test1 /> },{path: "test2",element: <Test2 />…

Springboot自定义starter

一、start背景和简介 1.背景 工作中经常需要将多个springboot项目共同的非业务模块抽取出来&#xff0c;比如访问日志、维护请求上下文中的用户信息或者链路id等等。此次模拟的是请求中用户信息维护&#xff0c;方便整个请求中用户信息的取用。 2.作用 根据项目组的实际需求…

【WPF.NET开发】创建简单WPF应用

本文内容 先决条件什么是 WPF&#xff1f;配置 IDE创建项目设计用户界面 (UI)调试并测试应用程序 通过本文你将熟悉在使用 Visual Studio 开发应用程序时可使用的许多工具、对话框和设计器。 你将创建“Hello, World”应用程序、设计 UI、添加代码并调试错误。在此期间&#…

策略设计模式

package com.jmj.pattern.strategy;public interface Strategy {void show(); }package com.jmj.pattern.strategy;public class StrategyA implements Strategy{Overridepublic void show() {System.out.println("买一送一");} }package com.jmj.pattern.strategy;p…

Raft 算法

Raft 算法 1 背景 当今的数据中心和应用程序在高度动态的环境中运行&#xff0c;为了应对高度动态的环境&#xff0c;它们通过额外的服务器进行横向扩展&#xff0c;并且根据需求进行扩展和收缩。同时&#xff0c;服务器和网络故障也很常见。 因此&#xff0c;系统必须在正常…

组件化编程

hello&#xff0c;我是小索奇&#xff0c;精心制作的Vue系列持续发放&#xff0c;涵盖大量的经验和示例&#xff0c;如果对您有用&#xff0c;可以点赞收藏哈~ 组件化编程 组件是什么&#xff1f; 一句话概括就是&#xff1a;实现特定功能的模块化代码单元 vm就是大哥&#xff…

flink源码分析之功能组件(四)-slot管理组件II

简介 本系列是flink源码分析的第二个系列&#xff0c;上一个《flink源码分析之集群与资源》分析集群与资源&#xff0c;本系列分析功能组件&#xff0c;kubeclient&#xff0c;rpc&#xff0c;心跳&#xff0c;高可用&#xff0c;slotpool&#xff0c;rest&#xff0c;metrics&…

各种外部排序的总结

多路归并 败者树 置换选择排序 最佳归并树

linux进程优先级_nice

4.1.3.4 进程优先级&#xff1a;nice nice以更改过的优先序来执行程序&#xff0c;如果未指定程序&#xff0c;则会印出目前的排程优先序&#xff0c;内定的 adjustment 为 10&#xff0c;范围为 -20&#xff08;最高优先序&#xff09;到 19&#xff08;最低优先序&#xff0…

认识K线形态,把握买入卖出时机

一、认识K线 1、K线的含义 股票一天之内有4个最关键的价格&#xff0c;开盘价、收盘价、最高价和最低价&#xff0c;把这个价格显示在图上就是K线图。 以金斗云智投电脑版为例&#xff0c;打开软件&#xff0c;任意搜索一支个股&#xff0c;就可以看到这支股票的K线。 股市新…

数据链路层之网桥

学习的最大理由是想摆脱平庸&#xff0c;早一天就多一份人生的精彩&#xff1b;迟一天就多一天平庸的困扰。各位小伙伴&#xff0c;如果您&#xff1a; 想系统/深入学习某技术知识点… 一个人摸索学习很难坚持&#xff0c;想组团高效学习… 想写博客但无从下手&#xff0c;急需…

更改AndroidStudio模拟器位置

C盘何等的珍贵&#xff0c;可是好多工具&#xff0c;软件非得默认安装在C盘。。导致C盘越来越紧张。。 在日常使用过程中&#xff0c;安装任何软件都会将其安装到非系统盘下&#xff0c;Android模拟器也不能例外。保护好C盘也是日常一个良好的习惯。 Android AVD默认路径&…

深入理解Servlet(下)

作者简介&#xff1a;大家好&#xff0c;我是smart哥&#xff0c;前中兴通讯、美团架构师&#xff0c;现某互联网公司CTO 联系qq&#xff1a;184480602&#xff0c;加我进群&#xff0c;大家一起学习&#xff0c;一起进步&#xff0c;一起对抗互联网寒冬 在这一篇文章里&#x…

hive里如何高效生成唯一ID

常见的方式&#xff1a; hive里最常用的方式生成唯一id&#xff0c;就是直接使用 row_number() 来进行&#xff0c;这个对于小数据量是ok的&#xff0c;但是当数据量大的时候会导致&#xff0c;数据倾斜&#xff0c;因为最后生成全局唯一id的时候&#xff0c;这个任务是放在一个…